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Summary of the Paper

Build on McAlinn and West (2018, JoE) “Dynamic Bayesian
predictive synthesis (BPS) in time series forecasting.”

Extend univariate BPS to the multivariate setting

Propose a new BPS methodology for a specific subclass of the
dynamic multivariate latent factor models

Advantages of the new method: evaluating and accounting for
time-varying

forecast bias of point forecast;
mis-calibration of density forecasts;
interdependencies among agents over multiple series.

Show encouraging empirical evidence on forecasting 6 macro
variables using 5 VAR models

Great paper!
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Forecast Combination

Bates and Granger (1969) have inspired extensive research on
combining forecasts.

In his book (2012), forecaster Nate Silver urges readers to be
“more foxy” by combining [lots of] information.

6/15/2018 2018 World Cup Predictions | FiveThirtyEight

https://projects.fivethirtyeight.com/2018-world-cup-predictions/?ex_cid=rrpromo 1/6
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Standings Matches

2018 World Cup Predictions
Soccer Power Index (SPI) ratings and chances of advancing for every team, updating live.

How this works Find out which team you should root for ESPN coverage

TEAM RATING KNOCKOUT STAGE CHANCES

TEAM GROUP SPI OFF. DEF.

MAKE 
ROUND

OF 16

MAKE
QUARTER- 

FINALS

MAKE 
SEMI-

FINALS
MAKE 
FINAL

WIN 
WORLD

CUP

94% 36% 16% 6% 2%

92% 35% 15% 5% 2%

12% 2% <1% <1% <1%

3% <1% <1% <1% <1%

87% 68% 46% 28% 17%

70% 44% 24% 11% 5%

Uruguay  3 pts. 80.0 2.3 0.6

Russia  3 pts. 72.3 2.0 0.8

Egypt  0 pts. 61.4 1.6 0.9

Saudi Arabia  0 pts. 48.8 1.4 1.3

Spain  0 pts. 91.3 3.2 0.5

Portugal  0 pts. 83.5 2.4 0.5

 
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Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals

a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.

Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.

The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.

Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Combine Information or Combine Forecasts?

Consider forecasting π. Each agent i = 1, . . . , N faces two signals
a public signal: y = π + η with precision h, and a private signal:
zi = π + εi, with precision s.
Assuming normality, the precision of agent i’s forecast is h+ s.
The precision of mean (or consensus) forecast is

(h+ s)2

h+ s/N
= h+ s+

(N − 1)s(h+ s)

Nh+ s
= h+Ns− (N − 1)2hs

Nh+ s

The precision of the optimal forecast by combining all public and
private information is h+Ns. See Kim, Lim and Shaw (2001).

Implication 1: Mean forecast is more precise than individual
forecast, since h+ s+ (N−1)s(h+s)

Nh+s > h+ s.
Implication 2: Mean forecast is less precise than the optimal

forecast, since h+Ns− (N−1)2hs
Nh+s < h+Ns.

Related to the current paper, each agent i provides a density
forecast hi(π). Given that these density forecasts are [highly]
correlated, the policy maker should combine the information
behind these forecasts.



Policy Maker’s Loss Function

Alan Greenspan pointed out that the monetary policy should be
conducted in such a way that the associated uncertainty is
minimized with respect to all scenarios.

When squared losses are used in forming expectations, the forecast
by the ith forecaster is given by Fit = E(πt|Iit−h), and its
associated uncertainty is defined as E [πt − E(πt|Iit−h)|Iit−h]2.
Individual uncertainty of this form has been used by Jurado,
Ludvigson and Ng (2015) to construct macro uncertainty.
Given individual uncertainty, the policy maker’s loss function can
be formulated as

min
ωi(t−h)

n∑
i=1

ωi(t−h)E [πt − E(πt|Iit−h)|Iit−h]2 .

The key is to realize that the uncertainty faced by a policy maker
in using the average forecast is the uncertainty associated with a
typical forecaster of the panel; see, Lahiri, Peng and Sheng (2018).
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Sources of Uncertainty

Draper (1995) identifies three sources of uncertainty:
Scenario uncertainty: the inputs to the models
Model uncertainty: how to translate inputs into forecasts
Predictive uncertainty: conditional on the scenario and model

The current paper considers both model and predictive
uncertainty.
Scenario uncertainty is important: a case study
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Measuring Interdependence across Agents/Variables

Comparing estimates of interdependence of 2003 vs. 2009

Hard to see any systematic difference between the two graphs.

Propose some summary statistics, e.g. dependence between agent i
and j for the same variable; between variables for the same agent.

Explore the connection between changes in the interdependence
pattern and regime changes in the economy.
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Minor Comments on Empirical Study

Use real-time dataset, e.g. considering large revisions in
consumption

Consider the random walk model as the benchmark; see Faust and
Wright (2013) that in forecasting inflation, ridiculously simple
forecasts are hard to beat.

Compare the BPS forecasts with those of experts; see Ang,
Bekaert and Wei (2007) that survey inflation forecasts are
generally more accurate than model-based forecasts.
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