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Abstract

Global developments play an important role for domestic inflation rates. Earlier

literature has found that a substantial amount of the variation in a large set of na-

tional inflation rates can be explained by a single global factor. However, inflation

volatility has been typically neglected, while it is clearly relevant both from a policy

point of view and for structural analysis and forecasting. We study the evolution of

inflation rates in several countries, using a novel model that allows for commonality

in both levels and volatilities, in addition to country-specific components. We find

that inflation stochastic volatility is indeed important, and a substantial fraction of

it can be attributed to a global factor that is also driving inflation levels and their

persistence. While various phenomena may contribute to global inflation dynamics,

it turns out that since the early ’90s the estimated global factor is correlated with

the Chinese PPI and Oil inflation. The extent of commonality among core infla-

tion rates and volatilities is substantially smaller than for overall inflation, which

leaves scope for national monetary policies. Finally, we show that the point and

density forecasting performance of the model is quite good, also relative to standard

benchmarks.
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1 Introduction

Global developments play an important role in the determination of inflation rates. Papers

such as Borio and Filardo (2007) and Ciccarelli and Mojon (2010) find that a substan-

tial amount of variation in a large set of national inflation rates can be explained by

global factors. Quoting Borio and Filardo (2007): ”...proxies for global economic slack

add considerable explanatory power to traditional benchmark inflation rate equations, even

allowing for the influence of traditional indicators of external influences on domestic in-

flation, such as import and Oil prices. Moreover, the role of such global factors has been

growing over time, especially since the 1990s. And in a number of cases, global factors

appear to have supplanted the role of domestic measures of economic slack.” This evidence

has been recently challenged by Lodge and Mikolajun (2016), whose results suggest that

the relevance of global factors for forecasting domestic inflation is related to their ability

to capture slow-moving trends, like those emphasized by Stock and Watson (2007) in

their decomposition of US inflation into trend and cyclical components. Other empirical

contributions, as Bianchi and Civelli (2015) and Auer et al. (2017), show that financial

openness and Global Value Chains are positively related to the effects of global slack on

inflation. We do not take an a priori stance on this point, but we will use an econometric

model where the relative contribution of global and country-specific factors as drivers of

inflation developments is estimated and can vary over time and across countries.

Another point stressed by Stock and Watson (2007), which however dates back to at

least Engle (1982), is the importance of allowing for conditional time-varying volatility

when modelling inflation. While Engle introduced the ARCH specification as a model for

inflation volatility, Stock and Watson (2007) used stochastic volatility, which is indeed

more common in macroeconomics applications and more flexible since it permits to have

different shocks as drivers of the level and volatility of an economic variable. Stock and

Watson found that the introduction of SV improves the out of sample forecasting power

of their model for US inflation, and it is preferable to both rolling estimation and regime

switching to allow for heteroskedasticity. Besides forecasting, inflation volatility is also

relevant for policy making as, for example, in periods of high volatility it is more difficult

to understand whether inflation movements are temporary or persistent.

Volatility needs to be modeled properly in multi-country studies on inflation determinants.

In particular, it seems interesting to understand whether and to what extent the cross-

country commonality among inflation levels is also present among inflation volatilities.

2



Furthermore, recent macro-financial literature has considered stochastic volatility as a

basis to construct measures of macro and financial uncertainty (see Jurado et al., 2015,

and Carriero et al., 2017). From this perspective, it may be important for a policymaker

to disentangle whether inflation uncertainty originates locally or globally.

Mumtaz and Surico (2008) investigate co-movements in an unbalanced panel of inflation

rates from the 1970s to early 2000s for 11 countries, using a large dynamic factor model

that incorporates time-varying coefficients and stochastic volatility in the unobservable

factors’ law of motions. Their decomposition does not show a large role for common

components, since most of the time variation in levels and volatilities seems captured

by the country-specific component and the residuals, which are left unexplained. They

conclude that there has been a fall in level, persistence and volatility of inflation across

countries, but with the drop in volatility not synchronized across nations.

Delle Monache et al. (2016) extend the model of Stock and Watson (2007) to a multivariate

inflation setting for the euro area, where the permanent component is common among

inflation rates of EMU members and the cyclical components are modeled as country-

specific autoregressive processes with time-varying parameters. They document that the

common permanent component has driven the general disinflation within the euro area,

and the importance of common shocks to euro area inflation has increased relatively to

idiosyncratic disturbances.

We have collected inflation rates for 20 OECD countries, over the period 1960Q1-2016Q4.

Figure 1 reports the time series of CPI inflation rates for each country. From visual

inspection, there emerges a non-trivial degree of commonality at low-medium frequencies,

as pointed out by Lodge and Mikolajun (2016). A plot of the inflation rates together

with their first principal component (PC), Figure 2, provides more evidence on their

co-movement (the first PC explains about 70% of the variability of all inflation rates).

However, the figure also highlights some country-specific movements in inflation rates, and

changes in the volatility of inflation, which seems overall smaller in the later part of the

sample. To provide descriptive evidence on commonality in inflation volatility, we have

estimated AR-SV models for each inflation rate, and in Figure 3 we report the estimated

volatilities together with their first principal component, which explains almost 60% of

their time variation.

This evidence motivates the choice of decomposing inflation rates into a common compo-

nent driven by a single global inflation factor, a country-specific component, and an error
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term featuring, in turn, common and idiosyncratic time-varying volatility.

Hence, we introduce a novel multivariate autoregressive index (MAI) model, with stochas-

tic volatility (SV), and autoregressive (AR) terms. A MAI model is a VAR with a partic-

ular reduced rank structure imposed on the coefficient matrices, such that each variable

is driven by the lags of a limited number of linear combinations of all variables (so called

Indexes), which can be considered as observable common factors. The MAI model was

introduced by Reinsel (1983) and further extended by Carriero et al. (2016b) to allow for a

large number of variables. Stochastic volatility (SV) was introduced in the MAI model by

Carriero et al. (2018), while Cubadda and Guardabascio (2017) allowed for the possibility

of autoregressive (AR) terms to capture idiosyncratic components. We combine all these

features into the MAI-AR-SV model, and develop a novel Bayesian MCMC estimation

algorithm.

The proposed methodological framework is considerably different from Mumtaz and Surico

(2008), who build upon the dynamic factor model of Stock and Watson (1989) and

Forni et al. (2000), and estimate their model’s stochastic volatilities using the univari-

ate method of Jacquier et al. (2004). Our methodology is also substantially different from

Delle Monache et al. (2016), who model multi-country inflation rates with a common per-

manent component and its own changing volatility, estimated in a non-Bayesian setting

in which time variation is driven by likelihood scores.

We work with a single index model where the index (a linear combination of all the na-

tional inflation rates) represents the global factor that drives both levels and volatilities

of all national inflation rates. Inflation levels and volatilities also have an idiosyncratic,

country-specific, component, whose relative importance with respect to the global com-

ponent is time-varying and empirically determined.

We find that the single common factor in the MAI-SV model explains on average about

70% of the variability of all inflation rates. Moreover, there is also substantial common-

ality in the inflation volatilities, increased in the last two decades. The average (across

countries) share of stochastic volatility explained by the global component spans from

20% to 65% throughout the sample. While various sources can be behind the global in-

flation factor, it turns out that since the early ’90s it is strongly correlated with Chinese

PPI and Oil inflation.

We also find that the global inflation factor is highly persistent, and this persistence is
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transmitted to the global component of the national inflation rates, in line with Ciccarelli

and Mojon (2010). Level components explained by the common factor show a larger

degree of persistence than idiosyncratic components.

We then repeat the same analysis on a panel of non-Food and non-Energy inflation rates

for the same set of OECD countries, using data available for the period 1979Q1-2016Q4,

finding a smaller but non-negligible degree of commonality. The global core inflation

factor explains roughly 25% of the variability of core CPI inflation levels and the average

(across countries) share of stochastic volatility explained by the global component spans

from 10% to 20% throughout the sample, without displaying sizable variation over time

as in the case of headline inflation rates. The remaining substantial national component

of core inflation level and volatility leaves scope for national monetary policies.

The evidence provided in this paper also contributes to the long standing debate on

globalisation, inflation and monetary policy. Rogoff (2003) and Rogoff (2006) discuss how

various structural elements accompanying the globalisation since the early 1990s may have

lowered the global long term equilibrium of inflation rates, fostering the strong global co-

movement of CPI and somehow diminishing the role of domestic slack and monetary

policy in determining national inflation. However, as highlighted also in the recent speech

by Carney (2017), core inflation seems to be less affected by global dynamics, already

when looking at simple pairwise correlation. Our work and methodology allow to mea-

sure separately the degree of cross-country commonality in first and second moments of

both headline and core inflation rates, providing precious information to monetary policy

makers pursuing their inflation mandate in an increasingly global context.

Finally, point and density forecast evaluation shows that the MAI-AR-SV model has very

good out of sample properties for inflation rates, when compared with a set of multivariate

and univariate competitors, and the SV specification is particularly relevant for the proper

calibration of density forecasts. These results hold for both all items inflation and core

inflation rates, and provide further empirical support for our proposed model.

The paper is structured as follows. Section 2 introduces the econometric models and the

volatility decomposition. Section 3 discusses the choice of prior distributions. Section 4

develops the MCMC estimation methodology, with additional details in the Appendix.

Section 5 presents data and empirical results on the commonality in inflation rate levels

and volatilities. Section 6 assesses the point and density forecasting performance of the

MAI-AR-SV inflation model. Section 7 concludes.
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2 The econometric model

2.1 The MAI-AR-SV model

We assume that the model for the n-dimensional zero mean process1 yt containing the

inflation rates of interest is:

yt︸︷︷︸
n×1

=

q∑
`=1

Γ`︸︷︷︸
n×n

· yt−` +

p∑
`=1

A`︸︷︷︸
n×r

· B0︸︷︷︸
r×n

yt−` + ut, (1)

where Γ` is a diagonal matrix:

Γ` = Diag(γ`), γ` =
[
γ1,` γ2,` . . . γn,`

]′
.

We can rewrite the model more compactly as

yt =
s∑
`=1

(Γ`+A` ·B0) yt−` + ut,

or

(I − C1L− ...CsLs)yt = C(L)yt = ut, (2)

where s = max(p, q) and C` = Γ`+A` ·B0, ` = 1, ..., s.

Moreover, we assume that

ut = G−1Σtεt, εt
iid∼ MN ( 0, In ) , (3)

so that

ut
i∼MN

 0, Ωt︸︷︷︸
n×n

 , Ωt = G−1ΣtΣt

(
G−1

)′
, (4)

where G is a triangular matrix containing reduced form covariances2, and (Σt)
T
t=1 is the

1A non-zero mean can be easily allowed by inserting an intercept in the model.
2The matrix G can be also made time-varying, but at the cost of a substantial increase in computational

complexity when the number of variables is large.
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history of diagonal matrices containing the stochastic volatilities:

G︸︷︷︸
n×n

=



1 0 . . . . . . 0

g1 1
. . . . . .

...

g2 g3 1
. . .

...
...

...
. . . . . . 0

gm−n+2 gm−n+3 . . . gm 1


, g︸︷︷︸

m×1

≡


g1

g2

...

gm

 , m ≡ n (n− 1)

2
,

Σt︸︷︷︸
n×n

= Diag(σt), σt︸︷︷︸
n×1

≡


σ1,t

σ2,t

...

σn,t

 ,

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n

 .

The specification in (1)-(4) is a Multivariate Autoregressive Index (MAI) model with

stochastic volatility (SV) and autoregressive (AR) terms, MAI-AR-SV. Each of the n

variables in the MAI-AR-SV model is driven by its own lags, capturing in our case country-

specific features of inflation, with associated coefficients Γ`, ` = 1, ..., q; by the lags of r

common observable factors (B0 yt−`, the ”indexes”), capturing in our case global features

of inflation, with associated loading matrices A`, ` = 1, ..., p; and by variable-specific

errors, ut, whose time-varying covariance matrix Ωt is expressed as in Cogley and Sargent

(2005).

With respect to an unrestricted VAR, the MAI-AR-SV specification leads to a substantial

reduction in the number of parameters influencing the conditional means: we go from n2p

coefficients of the VAR to at most n · q + n · r · p + r · n in the MAI-AR-SV case3. In

our empirical application, we have p = q = 4, r = 1 and n = 20, so that there are 180

parameters in the MAI-AR-SV while there would be 1600 parameters in an unrestricted

VAR.

3Assuming no restrictions in the matrix B0.
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2.2 An alternative representation of the MAI-AR-SV model

Let us define the obervable factors driving all variables as

Ft ≡ B0 · Yt, (5)

and note that the following decomposition holds:4

In = ΩtB
′
0Ξ−1

t B0 +B′0⊥Ξ−1
⊥,tB0⊥Ω−1

t , (6)

where B0⊥ is the (n− r)×n orthogonal matrix of B0, such that the scalar product of any

pair of rows of B0 and B0⊥ has zero value5, Ξt = B0ΩtB
′
0 and Ξ⊥,t = B0⊥Ω−1

t B′0⊥. Let us

also define

Gt = B0⊥Ω−1
t yt, (7)

where Gt are n−r variables that can be interpreted as idiosyncratic components, as there

are many of them and, as we will see later on, they are driven by shocks uncorrelated

with those driving the common factors Ft.

Using (5)-(7), we can now write the MAI-AR-SV model in (1)-(4) as

yt =

q∑
`=1

Γ`[ΩtB
′
0Ξ−1

t B0 +B′0⊥Ξ−1
⊥,tB0⊥Ω−1

t ] yt−` +

p∑
`=1

A` ·B0 yt−` + ut,

or

yt =

q∑
`=1

Γ`B
′
0⊥Ξ−1

⊥,tGt−`+

max(p,q)∑
`=1

(Γ`ΩtB
′
0Ξ−1

t + A`)F t−` + ut. (8)

Next, we derive the model for the factors Ft implied by the MAI-AR-SV model. Starting

4See Carriero et al. (2016b) and the references therein for details.
5This is equivalent to state

B0B
′
0⊥ = 0r×(n−r).
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from (8) and multiplying both sides of it either by B0 or by B0⊥Ω−1
t , we obtain:

Ft =

q∑
`=1

B0Γ`B
′
0⊥Ξ−1

⊥,tG t−`+

max(p,q)∑
`=1

B0(Γ`ΩtB
′
0Ξ−1

t + A`)F t−` + ωt, (9)

Gt =

q∑
`=1

B0⊥Ω−1
t Γ`B

′
0⊥Ξ−1

⊥,tGt−`+

max(p,q)∑
`=1

B0⊥Ω−1
t (Γ`ΩtB

′
0Ξ−1

t + A`)F t−` + ψt,

where [
ωt

ψt

]
=

[
B0ut

B0⊥Ω−1
t ut

]
i∼MN

(
0,

[
Ξt 0

0 Ξ⊥,t

])
, (10)

since

E(ωtψ
′

t) = E(B0utu
′

t Ω−1
t B

′

0⊥) = B0ΩtΩ
−1
t B

′

0⊥ = 0.

Hence, the r observable factors Ft and the n − r variables Gt jointly evolve as a VAR,

with block uncorrelated errors.

The model in (8)-(9) is similar to a factor augmented VAR (FAVAR) model, as for example

in Bernanke et al. (2005), or Stock and Watson (2002a) who also allow for variable-specific

AR terms. The model in (8)-(9) also features stochastic volatility both in the common (ωt)

and in the idiosyncratic (ψt) shocks, which is particularly relevant for modelling inflation,

as we will see. Moreover, in the FAVAR model the factors are unobservable, while they are

observable in the MAI case, which simplifies model estimation and interpretation of the

results. Finally, in general unobserved factors should be modeled with a VARMA rather

than a VAR model, as emphasized by Dufour and Stevanović (2013), while in our case

we can analytically derive the VAR model followed by the observable factors Ft (jointly

with the variables Gt).

2.3 Decomposing the volatilities

We decompose the stochastic volatility of the MAI-AR-SV errors ut into two orthogonal

components, one of them driven by the volatility of the common shocks ωt, the other by

that of the idiosyncratic shocks, ψt, orthogonal to ωt.
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Using again the decomposition in (6), we get:

ut = ΩtB
′
0Ξ−1

t ωt +B′0⊥
(
B0⊥Ω−1

t B′0⊥
)−1

ψt,

with Ξt = B0ΩtB
′
0. Hence, due to the orthogonality of ωt and ψt, we can then decompose

the total error volatility into the volatility of the common component and that of the

idiosyncratic component:

Ωt = Ωcom
t + Ωidio

t ,

where

Ωcom
t = ΩtB

′
0Ξ−1

t B0Ωt,

Ωidio
t = B′0⊥Ξ−1

⊥,tB0⊥.

2.4 Decomposing the levels and computing IRFs

It is interesting to decompose the inflation rates in yt into their common and idiosyncratic

components, where the common component is driven by the common shocks ωt and the

idiosyncratic component by the idiosyncratic shocks ψt. The decomposition can be also

used to compute impulse response functions (IRFs) to common shocks.

We cannot directly use the model in (8), as both Ft and Gt are driven by both ωt and ψt.

If the restricted VAR in (2) is stationary, we can write the associated MA representation

as

yt = C(L)−1ut = B(L)ut

= B(L)ΩtB
′
0Ξ−1

t ωt︸ ︷︷ ︸
Common

+B(L)B′0⊥
(
B0⊥Ω−1

t B′0⊥
)−1

ψt︸ ︷︷ ︸
Idiosyncratic

.

As an alternative, we can use the projection approach, proposed for example by Jordà

(2005) for IRF computation, to obtain a similar decomposition:

yt = B1(L)ωt +B2(L)ψt.

Note that, in both cases, the common and idiosyncratic components are orthogonal at all

leads and lags, due to temporal independence and orthogonality of ωt and ψt. Therefore,
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empirically, we can obtain the common component as the fitted value in a regression of

yt on contemporaneous and lagged values of the (estimated) common shocks ωt (and the

idiosyncratic component as yt minus the estimated common component), while the IRFs

to common shocks are computed from the elements of B1(L).

In our empirical application on inflation, we have a single factor (r = 1), so that ωt is a

scalar, which further simplifies the computation of the common component of inflation

rates, and their impulse response functions to global shocks.

The MAI-AR-SV model is estimated by means of Bayesian techniques. The next sec-

tion describes the specification of prior distributions for model parameters, while section

4 presents the MCMC estimation algorithm, with additional details in the Appendix.

Readers not interested in technical details can go directly to the empirical results in

Section 5.

3 Estimation of the MAI-AR-SV model

3.1 Specification of the prior distributions

The prior is constructed in various steps, which generally require the use of a training

sample {−T ∗, . . . ,−1, 0}.

3.1.1 Prior on B0 for the Metropolis step

Prior knowledge for the unrestricted elements of B0 is elicited with a Normal distribution.

To define these prior distributions, let us decompose the n variables in r blocks, so to

have as many blocks as factors (r).

yt︸︷︷︸
n×1

=

[
y1′
t︸︷︷︸

1×n1

y2′
t︸︷︷︸

1×n2

... yr′t︸︷︷︸
1×nr

]′
, n =

r∑
j=1

nj.

For each j ∈ {1, . . . , r}, we compute the largest eigenvalue score from the Principal

components analysis, so to obtain a final set of r score series
(
Sjt
)j∈{1,...,r}
t∈{1,...,T}. Once obtained
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the scores, we consider the following n− r univariate regression models:

∀j ∈ {1, . . . , r} , ∀k ∈ {2, . . . , nj} , Sjt = B0,j,k · yjt,k + uj,k,t, uj,k,t
iid∼ N

(
0, σ2

j,k

)
To normalize the first element of each B0,j, B0,j,1 is set at 1. Defining :

∀j ∈ {1, . . . , r} , B̃0,j︸︷︷︸
1×(nj−1)

≡
[
B0,j,2 . . . B0,j,nj

]
,

for each B̃0,j, we compute the OLS estimate and its variance.

The prior distribution for B0︸︷︷︸
r×n

can be then centered at

B0︸︷︷︸
r×n

=


1 B̃0,1 0 01×(n2−1) . . . 0 01×(nr−1)

0 01×(n1−1) 1 B̃0,2 . . . 0 01×(nr−1)

...
...

...
. . . . . . . . .

...

0 01×(n1−1) 0 01×(n2−1) . . . 1 B̃0,r,


and the respective variances are coming from each separate regression. Prior covariances

among elements are set to zero.

3.1.2 Prior on the loadings A

Defining A ≡
[
A1 . . . Ap

]
, the prior on a = vec (A′) is multivariate Normal, centered

on 0, and with diagonal variance Va resembling a Minnesota prior.

Va =


σ̂2
y,1 0 . . . 0

0 σ̂2
y,2

. . .
...

...
. . . . . . 0

0 . . . 0 σ̂2
y,n

⊗


Υ1 0 . . . 0

0 Υ2
. . .

...
...

. . . . . . 0

0 . . . 0 Υp

 ,

∀` ∈ {1, . . . , p} , Υ` =
λa
`d
·



1
σ̂2
F,1

0 . . . 0

0 1
σ̂2
F,2

. . .
...

...
. . . . . . 0

0 . . . 0 1
σ̂2
F,r

 ,
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where σ̂2
y,j and σ̂2

F,s are the residual variances of a univariate AR(1) for, respectively, each

variable j and each factor s (computed using the prior mean of B0). λa is a tightness

parameter.

3.1.3 Prior for the elements of the residual variance

The prior for the elements of G is a multivariate Normal distribution centered at zero,

with large diagonal covariance matrix. The prior for σ0 is a multivariate Normal, cen-

tered at
[
σ̂2
y,1 σ̂2

y,2 . . . σ̂2
y,n

]′
, with identity covariance matrix, as in Primiceri (2005).

Prior distributions for the innovation covariance matrix Qσ is calibrated as in Primiceri

(2005).

3.1.4 Prior for the AR coefficients γ

The prior distribution of the AR coefficients in γ is a multivariate Normal distribution. In

the spirit of a Minnesota Prior, we choose an a priori unitary mean for the first lag of each

variable whose dynamics resemble a random walk, and a zero mean for the higher lags.

Regarding the a priori covariance matrix, we assume no correlation across coefficients of

different lags and variables, and we set a prior structure for the variances which resembles

the Minnesota prior, using the tightness and decay parameters.

γ̄ =


γ̄1

γ̄2

...

γ̄q

 =


1n×1

0n×1

...

0n×1

 , Vγ = λγ ·


1−d 0 . . . 0

0 2−d
. . .

...
...

. . . . . . 0

0 . . . 0 q−d

⊗ In.

3.2 Gibbs Sampler

This subsection describes each step of the Gibbs Sampler (GS) used to simulate from the

joint posterior distribution of both parameters {γ,A,B0, G,Qσ} and unobservable states

(σt)
T
t=1 of the MAI-AR-SV model. Moreover, the Omori et al. (2007) procedure requires

drawing the indexes of Normal components of the mixture approximating the logχ2
1,

contained in the matrix S. This approach is needed as the joint posterior distribution

cannot be analytically determined. The steps are the following:
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1. Draw the AR coefficients γ
∣∣∣A,B0, G,Qσ (σt)

T
t=1 ,

2. Draw the loadings A
∣∣∣γ,B0, G,Qσ, (σt)

T
t=1 ,

3. Draw the factor weights B0

∣∣∣γ,A,G,Qσ, (σt)
T
t=1 ,

4. Draw the off-diagonal elements in G
∣∣∣γ,A,B0, Qσ, (σt)

T
t=1 ,

5. Draw the indexes of the mixture in S
∣∣∣γ,A,B0, G,Qσ, (σt)

T
t=1 ,

6. Draw a history of volatilities (σt)
T
t=1 |S, γ, A,B0, G,Qσ ,

7. Draw the covariance of volatilities’ innovations Qσ

∣∣∣γ,A,B0, G, (σt)
T
t=1 .

It is important to note6 that steps 2 and 3 have yt−Xt · γ as dependent variable in order

to draw A and B0, while in step 1 we use yt−A ·Zt to draw the AR coefficients7 8.

Each step of the GS for the MAI-AR-SV is described in detail in section A of the Ap-

pendix.

4 The global component of inflation volatility

4.1 Data

Following the literature on global inflation (e.g. Ciccarelli and Mojon, 2010 and Bo-

rio and Filardo, 2007) we gathered a panel of Consumer Price Indices for a set of 20

OECD countries9, downloaded from the OECD main economic indicators database. The

dataset includes 228 observations at quarterly frequency, covering the period from 1960-

Q1 to 2016-Q4. We then constructed inflation rates as year on year changes of the

indexes10.

6See the Appendix for further details.
7Zt ≡ (Ip ⊗B0) · vec

([
yt−1 . . . yt−p

])
.

8Xt =
[
Diag(yt−1) Diag(yt−2) . . . Diag(yt−q)

]
.

9USA, Australia, Austria, Belgium, Canada, Finland, France, Germany, Greece, Italy, Japan, Luxem-
bourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK

10Ciccarelli and Mojon (2010) use Year on Year changes of CPI inflation rates for the bulk of their
analysis. O’Reilly and Whelan (2005) adopt the same transformation stressing that is cited in the ECB’s
official inflation mandate. Lodge and Mikolajun (2016) point out that using YoY changes in CPI is
preferable since this transformation produces no seasonal pattern by construction.
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4.2 MAI-SV and MAI-AR-SV

We start with a MAI-SV specification (that is with Γ` = 0, ∀`), with p = 4 lags and

with a single global factor (r = 1), similar to the preferred specification of Ciccarelli and

Mojon (2010). The resulting model is estimated by a simplified version of the MCMC

algorithm presented in Section 4, see Carriero et al. (2018) for details.

Figure 4 reports the inflation rates for each country along with the posterior bands and

median of the estimated common global inflation factor. The model is clearly able to

capture the substantial co-movement of national inflation rates.

Figure 5 reports the data compared with the in-sample fit of the MAI-SV model for

each country, as well as the percentage share of variance explained. On average (across

countries) the estimated common component explains roughly 73% of the variance, which

is in line with the Principal Component Analysis.

Next, as the residuals of the MAI-SV model are clearly serially correlated at least over

parts of the sample, we estimate a MAI-AR-SV model with p = 4 lags for the common

part, as for the MAI-SV, and q = 4 lags for the country-specific AR components. The

in-sample fit for the various countries is presented in Figure 6. The fit of the MAI-AR-

SV is systematically higher than that of the MAI-SV specification, reaching an average

explained variance of about 94%. In particular, the MAI-AR-SV specification is able to

capture both the low and the high frequency variation of each inflation series, due to the

presence of both common and country-specific autoregressive components.

Notwithstanding the differences mentioned above, the estimated global factor from the

MAI-SV and MAI-AR-SV models are very similar, see Figure 7. They are also very

similar to the first PC of the inflation rates. The latter is used to form the prior on

the B0 coefficients in the MAI models, but the prior variance is large enough so that

results are data driven rather than dictated by the prior. All such measures of common

components are also comparable, though with some differences, to an OECD measure

of global inflation, also reported in Figure 7. These results are in line with the findings

of Ciccarelli and Mojon (2010), even though their sample stops in 2008. As reported

also by Ferroni and Mojon (2016), our analysis suggests strong commonality in inflation

developments across OECD continues also in the more recent period, and, actually, it has

been particularly high during the last financial crisis11.

11Using a more recent sample of inflation rates (1993-2014), Ferroni and Mojon (2016) find that the
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Finally, while there can be many drivers of the global inflation factor, Figure 8 shows that

after the 90’s it is correlated with the Chinese PPI inflation rate and the Oil inflation

rate.

4.3 Levels decomposition and persistence

Using the level decomposition discussed in section 2, we are able to disentangle the ob-

served inflation series of each country into orthogonal components driven, respectively,

by common and idiosyncratic shocks. Moreover, for each country we measure how much

variation is explained by each component.

Figures 9 and 10 report, respectively, the common and idiosyncratic components, com-

pared with the actual series. The common components tend to explain more than 50%

of almost all countries’ inflation rates, and are particularly important in large economies

like the US, UK, Germany and Japan.

Stock and Watson (2007) discuss the persistence of US inflation, using as a measure of

persistence the largest autoregressive root of the levels’ process. Inference about this

measure of persistence is made possible by the Stock (1991) method, which is appropriate

when dealing with series displaying high levels of persistence. Stock and Watson (2007)

do not find strong evidence of persistence changes in US inflation from the 1970s onwards,

reporting the largest AR root of US CPI inflation comprised between 0.85 and 1.05 (as

90% confidence interval). O’Reilly and Whelan (2005) report little evidence of instability

for inflation persistence in the Euro Area since the 1970s; they report rolling confidence

intervals for the largest AR root of Euro Area CPI inflation that are centered around 0.9

across almost the entire sample.

In light of this literature, using the entire sample, we computed the 90% confidence

intervals (CI) for the largest AR roots of all national CPI inflation series, of their common

and idiosyncratic components, and of the global factor. Figure 11 compares the CI for the

largest AR root of the observed series, their components and the global factor, separately

for each country. The picture clearly shows how the common global components tend

to preserve the high persistence of the observed series, while the idiosyncratic country-

specific components display wider confidence intervals centered on slightly smaller values.

The global factor shows a very narrow CI centered on 0.99.

fraction of national inflation rates’ variance that is explained by Global Inflation remains dominant.
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These results are in line with what reported by Ciccarelli and Mojon (2010), who argue

that ”the global component captures the most persistent and possibly nonstationary part

of inflation”. Indeed, using a different methodology, they report smaller persistence for

the so called ”national” components; interpreting such results, they consider the global

factor as an attractor and the main driver of persistence coming from the observed data.

However, for this specific exercise they use annualized quarter on quarter inflation rates,

which is a transformation that tends to display a smaller degree of persistence than

the year on year transformation. Performing our analysis using QoQ CPI changes, we

measure a degree of persistence in line with Ciccarelli and Mojon (2010) for both global

and national inflation components.

4.4 Time-varying residual volatility decomposition

Figure 12 reports the posterior bands of the estimated reduced form conditional infla-

tion volatilities of all countries for the MAI-AR-SV. The estimated volatilities display a

relevant degree of commonality. Indeed, the first principal component of the volatilities

explains on average about 50% of their variation.

Principal component analysis is however not so suited in this context, due to the time-

varying covariance matrix of the errors. Hence, to better understand what is driving the

volatilities, we can apply the decomposition discussed in Section 2. Figures 13 and 14

present the decomposition of the estimated volatilities in their common and idiosyncratic

components. More specifically, Figure 13 presents results in absolute terms and Figure

14 in relative terms. It turns out that the contribution of the common component is non

trivial, reaching values above 50% for some countries and time periods, especially during

the last decades, in particular during the Great Recession.

In this multi-country context, it is complex to understand the drivers of the common

inflation volatility component. However, for a single country this can be done. Carriero

et al. (2018), focusing on the US, find that supply shocks are particularly important, with

demand shocks ranked second and monetary/financial shocks third.

Figure 15 shows the posterior bands of the global factor volatility, that is (Ξt)
T
t=1. Global

inflation volatility was moderate during the 1960s, increased dramatically during the 1970s

before the sharp reduction starting in the 1980s associated with the change in monetary

policy to fight inflation occurred in several countries. These results are in line with the
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US inflation volatility estimated by Stock and Watson (2007). Global inflation volatility

has remained very low until mid 2000s, reaching a new spike during the Great Recession,

before turning back to the historically low values of the last 3/4 years. Time variation is

significant and relatively large throughout the entire estimation sample.

In order to understand which global forces may correlate with global CPI inflation volatil-

ity, we estimated two measures of stochastic volatilities from separate univariate AR-SV

models for Oil inflation, measured by the WTI price ($/barrel), and for Chinese PPI

inflation, available only from the early 1990s. A comparison of median volatilities is re-

ported in Figure 16. From visual inspection, a clear co-movement between Oil and global

CPI inflation volatility stands out, showing a correlation around 0.5 from the early 1970s

and almost 0.8 from the early 1990s. Also the Chinese PPI inflation volatility displays a

positive correlation with global CPI uncertainty: the correlation is around 0.7 from the

early 1990s.

4.5 Commonality in core inflations

In light of the correlation (in both levels and volatilities) between the global component

of headline CPI inflation and Oil, it is important to detect how much core components

of the CPIs remain correlated. To this end, the same exercises of this section have been

performed using the non-Food and non-Energy Consumer Prices Indices for the same set

of countries, downloaded from the OECD main economic indicators database. These data

are available only from the late ’70s onwards.

Non-Food and non-Energy inflation tends to display a lower degree of commonality, al-

ready from a quick graphical inspection. Performing our decompositions, results collected

in Appendix C indicate a smaller importance of the common component both in volatili-

ties and in levels: the global core inflation factor explains roughly 25% of the variability of

core CPI inflation levels, while the average (across countries) share of stochastic volatility

explained by the global component spans from 10% to 20% throughout the sample. The

fact that core inflation remains mostly a national phenomenon leaves ample scope for

national monetary policies.
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5 Forecasting inflation with the MAI-AR-SV model

To provide further evidence on the usefulness of the MAI-AR-SV as a model for multi-

country inflation, we now evaluate its out of sample properties, also in comparison with

a set of standard competitors.

Using the same inflation series employed in the structural analysis, several models are

recursively estimated on a forecasting window of 101 quarterly vintages (forecasting win-

dow starts from 1990Q1). The associated out of sample forecasts are produced for six

different models and 8 horizons, from 1 to 8 quarters ahead.

The models under evaluation are the following:

• the Multivariate Autoregressive Index model with AR components and Stochastic

Volatility (MAI-AR-SV)

• the Multivariate Autoregressive Index model with AR components (MAI-AR)

• the univariate Autoregressive model (AR)

• the univariate Autoregressive model with Stochastic Volatility (AR-SV)

• the Vector Autoregressive model (VAR)

• the Vector Autoregressive model with Stochastic Volatility (VAR-SV)

All models are estimated using Bayesian techniques. AR and VAR priors are constructed

using the standard Litterman (1986) a priori assumption of univariate random walk pro-

cesses. The SV prior in all models is calibrated as in Primiceri (2005). The MAI prior is

specified as shown in section 3.

Diagnostics are then computed both in terms of point forecasting and density forecasting,

following the evaluation framework of Clark and Ravazzolo (2015).

Specifically, to evaluate the accuracy in terms of point forecasting, we compute the fore-

casts posterior medians for all vintages, models, variables and horizons. Then, we compute

the Root Mean Squared Forecast Error (RMSFE) for each model, variable and horizon,

using the variation across vintages. Hence, for each variable j ∈ {1, . . . , n}, each horizon

h ∈ {1, . . . , H} and each model m ∈ {1, . . . ,M} we compute:

RMSEm
j,h =

√√√√ 1

T ∗

T+T ∗∑
t=T+1

(
yj,t+h − ŷmj,t+h

)2
,
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where ŷmj,t+h is the median of the posterior distribution
(
ŷm,ij,t+h

)Lc

i=1
(Lc is the length of the

discretized posterior distribution). To test for significance of the squared forecast errors

differences across models, we compute the Diebold and Mariano (1995) t-tests for equality

of the average loss.

To evaluate models in terms of density forecasting, we use two measures of accuracy:

the average log-predictive score and the average Continuous Ranked Probability Score

(CRPS). Even in this case, to test for significantly different performances we employ the

Diebold and Mariano test, following Clark and Ravazzolo (2015).

Log Predictive Scores are obtained via non-parametric kernel smoothing density estima-

tors. Adopting a normal kernel KN (·) and following an optimal selection strategy of the

bandwith parameter Ĥ, we can compute for each variable, model, horizon and vintage

the empirical density evaluted at the actual observation yj,t+h, that is:

f̂m

(
yj,t+h, Ĥ

)
=

1

Ĥ · Lc

Lc∑
i=1

KN

(
yj,t+h − ŷm,ij,t+h

Ĥ

)
.

Then, applying logarithms and computing the average across forecasting vintages yields

the average log score for each variable, model and horizon:

logScore
m

j,h =
1

T ∗

T+T ∗∑
t=T+1

log f̂m

(
yj,t+h, Ĥ

)
.

To compute the average CRPS, following Clark and Ravazzolo (2015), we first compute

the CRPS per each variable, model, horizon and vintage, making use of the actual ob-

servations, the posterior distribution
(
ŷm,ij,t+h

)Lc

i=1
and a random permutation of the latter(

ŷ
m,i′(i)
j,t+h

)Lc

i=1
where i′ : {1, . . . , Lc} → {1, . . . , Lc} is randomly drawn without replacement.

Lastly, we simply compute the average across time vintages:

CRPSmj,t+h =
1

Lc

Lc∑
i=1

∣∣ŷm,ij,t+h − yj,t+h
∣∣− 1

2 · Lc

Lc∑
i=1

∣∣∣ŷm,ij,t+h − ŷ
m,i′(i)
j,t+h

∣∣∣ ,
CRPS

m

j,h =
1

T ∗

T+T ∗∑
t=T+1

CRPSmj,t+h.

Figure 17 portrays the relative performance of the competing set of models against the
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benchmark model MAI-AR-SV, for each country and four selected horizons. Models’

point forecasting performance is reported as ratio between their own Root Mean Squared

Errors and the benchmark’s, so that values larger than one imply that the MAI-AR-SV

produces more accurate point forecasts. The MAI-AR-SV model improves significantly

upon its counterparts on most variables, especially at short horizons, even though in a

smaller number of cases this is reversed. The AR-SV shows competitive point forecasting

performance, especially at longer horizons. The highly parametrized VARs generally

achieve a lower degree of point forecasting accuracy than the benchmark. Tables 1a and

1b in the appendix report detailed results.

Moving to density forecast evaluation, Figure 18 reports the relative average log predic-

tive scores for the chosen set of models and horizons. Alternative models’ performance

is reported in terms of log-scores differences with the benchmark MAI-AR-SV, so that

negative values favor the MAI-AR-SV. The benchmark model clearly improves upon its

competitors: the difference is negative and significant in most cases. Eventually, Figure

19 reports the CRPS reported comparatively as a ratio, where values greater than one in-

dicates a worse density forecasting performance with respect to the MAI-AR-SV. Results

are in line with the log-scores, with the benchmark model improving significantly upon

its competitors12.

To conclude, MAI-AR-SV is also a good forecasting model for inflation rates. The intro-

duction of SV is particularly relevant to improve density forecasts. This evidence is in line

with findings reported by Clark and Ravazzolo (2015) and D’Agostino et al. (2013). On

the other hand, even though the AR-SV shows already good point and density forecasting

power for inflation rates, the introduction of a MAI component proves to be quite benefi-

cial. Furthermore, notwithstanding the smaller number of coefficients due to the reduced

rank restriction imposed by the MAI structure, the benchmark model attains a higher

degree of forecasting accuracy with respect to the standard unrestricted VAR estimated

using a Minnesota Prior as shrinkage device.

6 Conclusions

Global developments play an important role in the determination of inflation rates, and

indeed earlier literature has found that a substantial amount of the variation in a large

12More detailed forecasting results are reported in Appendix B.
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set of national inflation rates can be explained by a single global factor. This literature

has typically neglected inflation (conditional) volatility, while volatility is clearly relevant

both from a policy point of view and for structural analysis and forecasting.

In this paper we study the evolution of inflation rates in many countries, using a novel

model that allows for commonality in both levels and volatilities, in addition to country-

specific components. We find that allowing for inflation volatility is indeed important,

and a large fraction of it can be attributed to a global factor that is also driving the

inflation levels.

While other sources can be behind this global factor, it turns out that since the early

’90s it is strongly correlated with the Chinese PPI and Oil prices. Moreover, also the

global factor stochastic volatility is highly correlated with that of Chinese PPI and Oil

prices.

Repeating the same analysis on core inflation rates for the same set of OECD countries, the

model finds a smaller but non-negligible degree of commonality. The substantial national

component of core inflation level and volatility leaves ample scope for local monetary

policies.

The MAI-AR-SV shows also very good out of sample properties, achieving comparatively

better forecasting performances when compared with a set of prominent alternative mod-

els, especially in terms of density forecasting.
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Figure 1: Inflation rates (year on year growth rates in quarterly CPIs)

Figure 2: Inflation rates and their first principal component (thick red line)
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Figure 3: CPI inflation rates Stochastic Volatilities estimated from univariate AR-SV, and their
first Principal Component (thick red line)

Figure 4: MAI-SV estimated common factor (with posterior bands) Vs Data
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Figure 5: MAI-SV in-sample fit
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Figure 6: MAI-AR-SV in-sample fit
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Figure 7: Comparing common factor

Figure 8: Comparing MAI component with Chinese PPI, Oil Inflation and Global Output Gap
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Figure 9: MAI-AR-SV, Actual series and Common component (red)

33



Figure 10: MAI-AR-SV, Actual series and Idiosyncratic component (blue)

34



Figure 11: Largest Autoregressive Root (90% confidence intervals) CPI inflation levels, compo-
nents, and global factor.
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Figure 12: MAI-AR-SV, Residuals’ Volatility, posterior bands
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Figure 13: MAI-AR-SV, Residuals’ Volatility, TV decomposition, Common (red), Idio (blue),
total (green)
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Figure 14: MAI-AR-SV, Residuals’ Volatility, TV decomposition shares (%), Common (red),
Idio (blue)
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Figure 15: MAI-AR-SV, Global Factor Volatility, Posterior bands.

Figure 16: Median Volatilities of Global Factor (MAI-AR-SV), Oil inflation (AR-SV) and Chi-
nese PPI (AR-SV)
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Figure 17: Relative Root Mean Squared Forecast Errors (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-
statistic, see legend below.
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Figure 18: Relative Log Predictive Scores (differences with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-
statistic, see legend below.
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Figure 19: Relative Continuous Rank Probability Scores (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-
statistic, see legend below.
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A Gibbs Sampler for estimation of the MAI-AR-SV

model

A.1 Step 1: draw AR-coefficients γ

The AR components included in the MAI-AR-SV are stacked in the following way:

yt =

q∑
`=1

Γ` · yt−` + A · Zt + ut,

yt =

q∑
`=1


γ1,` 0 . . . 0

0 γ2,`
. . . 0

0
. . . . . . 0

0 . . . 0 γn,`

 · yt−` + A · Zt + ut,

yt =

q∑
`=1


y1,t−` 0 . . . 0

0 y2,t−`
. . . 0

0
. . . . . . 0

0 . . . 0 yn,t−`

 ·

γ1,`

γ2,`

...

γn,`

+ A · Zt + ut,

yt =

q∑
`=1

Yt−` · γ` + A · Zt + ut,

yt =
[
Yt−1 Yt−2 . . . Yt−q

]
·


γ1

γ2

...

γq

+ A · Zt + ut,

so that we can eventually write a fully stacked form:

yt = Xt︸︷︷︸
n×nq

· γ︸︷︷︸
nq×1

+ A︸︷︷︸
n×rp

· Zt︸︷︷︸
rp×1

+ ut.
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Given B0 and A, we can transform the matrix form to have the following linear regression

model with common coefficients and variable specific regressors:

yt = Xt · γ + A · Zt + ut,

yt − A · Zt = Xt · γ + ut,

y◦t = Xt · γ + ut,

with

ut
i∼MN

 0, Ωt︸︷︷︸
n×n

 , ut = G−1Σtεt, εt
iid∼ MN ( 0, In ) .

Considering separate equations to estimate the AR coefficients contained in γ would

ignore the cross-correlations of the innovations in ut. Considering that within the GS we

draw directly the elements g in the matrix G and the stochastic volatilities σt in Σt, for

efficiency purposes we can compute the following transformation of the equation:

y◦t = Xt · γ + ut,

y◦t = Xt · γ +G−1Σtεt,

Σ−1
t G · y◦t = Σ−1

t G · Xt · γ + Σ−1
t G ·G−1Σt︸ ︷︷ ︸

In

· εt,

Σ−1
t G · y◦t = Σ−1

t G · Xt · γ + εt,

ỹ◦t = X̃t · γ + εt.

Finally obtaining a multivariate linear regression with homoskedastic residuals and unitary

diagonal covariance matrix:

ỹ◦t = X̃t · γ + εt, εt
iid∼ MN ( 0, In ) .
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The transformed model can be stacked in columns:
ỹ◦1
...

ỹ◦T

 =


X̃1

...

X̃T

 · γ +


ε1

...

εT

 ,
Ỹ ◦︸︷︷︸
nT×1

= X̃︸︷︷︸
nT×nq

· γ︸︷︷︸
nq×1

+ ε◦︸︷︷︸
nT×1

, ε◦∼MN ( 0, IT ⊗ In ) .

With the stacked version of the model, adopting the Normal conjugate prior for coefficients

γ:

γ∼MN ( γ̄, Vγ ) ,

we can eventually draw from the posterior of γ:

γ∼MN
(
γ̃, Ṽγ

)
,

where

γ̃ = Ṽγ ·
(
X̃ ′ · Ỹ ◦ + V −1

γ · γ̄
)
, Ṽγ =

(
X̃ ′ · X̃ + V −1

γ

)−1

.

A.2 Step 2: Draw loadings A

The second step of the GS aims at drawing the loadings contained in A. Recalling the

following:

A ≡
[
A1 . . . Ap

]
, xt ≡ vec (x•t ) , x•t︸︷︷︸

n×p

≡
[
yt−1 . . . yt−p

]
,

Zt ≡


B0yt−1

...

B0yt−p

 = (Ip ⊗B0) · xt = vec (B0 · x•t ) ,
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the model can be restated as:

yt −Xt · γ =
[
A1 . . . Ap

] 
B0yt−1

...

B0yt−p

+ ut,

y•t = A︸︷︷︸
n×rp

· Zt︸︷︷︸
rp×1

+ ut,

and can be stacked as: 
y•′1

y•′2
...

y•′T

 =


Z ′1

Z ′2
...

Z ′T

A′ +

u′1

u′2
...

u′T

 ,
y•︸︷︷︸
T×n

= Z︸︷︷︸
T×rp

· A′︸︷︷︸
rp×n

+ u.

Defining a ≡ vec (A′), and exploiting the Kronecker product’s properties, this form can

be vectorized and transformed in:

vec (y•) = vec (Z · A′ · In) + vec (u) ,

Y •︸︷︷︸
nT×1

= (In ⊗ Z)︸ ︷︷ ︸
n×nrp

· a︸︷︷︸
nrp×1

+ U,

where U︸︷︷︸
nT×1

has the following distribution:

U ∼MN

 0, Vu︸︷︷︸
n×n

 ,
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and

Vu ≡



Ω
(1,1)
1 0 · · · 0 · · · · · · Ω

(1,n)
1 0 · · · 0

0 Ω
(1,1)
2

. . .
... · · · · · · 0 Ω

(1,n)
2

. . .
...

...
. . . . . . 0 · · · · · · ...

. . . . . . 0

0 · · · 0 Ω
(1,1)
T · · · · · · 0 · · · 0 Ω

(1,n)
T

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

...
. . .

...
...

...
...

Ω
(n,1)
1 0 · · · 0 · · · · · · Ω

(n,n)
1 0 · · · 0

0 Ω
(n,1)
2

. . .
... · · · · · · 0 Ω

(n,n)
2

. . .
...

...
. . . . . . 0 · · · · · · ...

. . . . . . 0

0 · · · 0 Ω
(n,1)
T · · · · · · 0 · · · 0 Ω

(nn)
T


=

T∑
t=1

[Ωt ⊗ (et · e′t)] .

To use an informative prior on a we follow the approach by Gelman et al. (2014). The

strategy incorporates the prior as observations. Considering a multivariate Normal prior

with the following moments:

a ∼MN ( ā, Va ) ,

it is possible to augment the model with nrp observations that express the prior informa-

tion: [
Y •

ā

]
=

[
In ⊗ Z
Inrp

]
a+

[
U

Ua

]
,

Y � = Z�a+ U�, U� ∼MN ( 0nT+nrp, V
� ) ,

V � =

[
Vu 0nT×nrp

0nrp×nT Va

]
.

A draw for a then comes from the following posterior:

a ∼MN
(
ã,
(
Z�′V �−1Z�

)−1
)
,

ã =
(
Z�′V �−1Z�

)−1
Z�′V �−1Y �.
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In order to decrease the computational burden of this step throughout the sampling,

the strategy proposed by Carriero et al. (2016a) is adopted, as generalized in Carriero

et al. (2018): the triangular structure of the error is exploited, and coefficients are drawn

equation by equation.

A.3 Step 3: Draw the factor weights elements in B0

Given the restrictions and the nonlinear role of B0, a Random walk Metropolis step on

the kernel of the posterior of each element of B0 is implemented, nested into the GS In

order to do this, we first write the likelihood of the model. Given the reduced form VAR

written as:

yt = Xt · γ + A · Zt + ut , ut
i∼MN ( 0, Ωt ) ,

conditioning on all the elements, using the chain rule, we can write the likelihood kernel

as:

f
(

(yt)
T
t=1

∣∣∣ γ,A, (Ωt)
T
t=1 , B0

)
∝

(
T∏
t=1

|Ωt|−
1
2

)
exp

{
−1

2

T∑
t=1

ŷ′t · Ω−1
t · ŷt

}
,

where

ŷt ≡ yt − A · Zt −Xt · γ.

Now we consider the r∗ ≡ n − r scalar unrestricted elements of B0, i.e. (b0,j)
r∗

j=1. Then,

∀j ∈ {1, . . . , r∗} we can define the set b0,j− ≡ (b0,s)s 6=j.

For a given prior f (b0,j) on each element b0,j, we can write the kernel of the conditional

posterior of b0,j as:

fpost

(
b0,j| (yt,Ωt)

T
t=1 , A, b0,j−

)
∝ f

(
(yt)

T
t=1

∣∣∣A, B0, (Ωt)
T
t=1

)
· f (b0,j) .

We are now ready to design the Metropolis step, separately for each j. Given the last

step Bi−1
0 , a random walk candidate is computed as:

b∗0,j = bi−1
0,j + cj · ηt,

where cj is a scaling factor calibrated to have an acceptance rate of approximately 30%-

35% and ηt
iid∼ N (0, vj), with vj being the variance of prior f (b0,j). The candidate draw
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is accepted with probability:

αj = min

1,
fpost

(
b∗0,j
∣∣ (yt,Ωi−1

t

)T
t=1

, A, bi−1
0,j−

)
fpost

(
bi−1

0,j

∣∣ (yt,Ωi−1
t

)T
t=1

, A, bi−1
0,j−

)
 .

When the candidate is accepted, then bi0,j− = b∗0,j, otherwise bi0,j− = bi−1
0,j−. Repeating this

procedure ∀j ∈ {1, . . . , r∗}, we build a draw Bi
0 from the distribution of interest.

A.4 Step 4: draw the off-diagonal elements in G

To draw the off-diagonal elements, we restate the reduced form in the following way:

yt = Xt︸︷︷︸
n×nq

· γ︸︷︷︸
nq×1

+ A︸︷︷︸
n×rp

· Zt︸︷︷︸
rp×1

+ ut,

yt −Xt · γ − A · Zt = G−1Σtεt,

ŷt = G−1Σtεt,

G · ŷt = Σtεt.

Removing ones from the diagonal of G, and bringing off diagonal elements on the right

hand side, produces:

G = In +G∗.

This can be combined in the model to obtain:

(In +G∗) ŷt = Σt εt,

ŷt = −G∗ ŷt + Σt εt.

Exploiting the Kronecker product’s properties, we get:

− In G∗︸︷︷︸
n×n

ŷt︸︷︷︸
n×1

= −(In ⊗ ŷ′t)︸ ︷︷ ︸
n×n2

vec (G∗′)︸ ︷︷ ︸
n2×1

where vec (G∗′) has zeros in positions [(i− 1)n+ j]
i∈{1,...,n}
j∈{1,...,n}. By removing the zeros, we

obtain exactly the elements below the main diagonal of G gathered in the m-dimensional
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vector g. Removing the corresponding columns in − (In ⊗ ŷ′t) we construct the matrix

Wt, which has the following form:

Wt︸︷︷︸
n×m

= −1 ·



0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

ŷ1,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 ŷ1,t ŷ2,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 ŷ1,t ŷ2,t ŷ3,t 0 . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 0 0
. . . . . .

...
...

...
... 0

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ŷ1,t ŷ2,t ŷ3,t . . . ŷn−1,t


.

We can then rewrite the model as:

ŷt = −G∗ŷt + Σtεt,

ŷt = − (In ⊗ ŷ′t) vec (G∗′) + Σtεt,

ŷt = Wt g + ε∗t , ε∗t ∼MN
(

0n×1, Σ2
t

)
.

Next, we stack the model as:
ŷ1

ŷ2

...

ŷT

 =


W1

W2

...

WT

 g +


ε∗1

ε∗2
...

ε∗T

 ,
ŷ︸︷︷︸

nT×1

= W︸︷︷︸
Tn×m

· g︸︷︷︸
m×1

+ ε∗, ε∗ ∼MN
(

0nT×1, Σ2
)
m

where Σ is the diagonal matrix containing all the stacked stochastic volatilities vectors in

the main diagonal:

Σ = Diag

([
σ′1 σ′2 . . . σ′T

]′)
.

We can then use a similar approach as the one implemented for a, following Gelman et al.

(2014). Given the prior :

g ∼MN ( ḡ, Vg ) ,
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we augment the model with r observations that express the prior information:[
ŷ

ḡ

]
=

[
W

Im

]
g +

[
ε∗

εg

]
,

Ŷ � = W �g + ε�, ε� ∼MN ( 0nT+m, V
�
ε ) ,

V �ε =

[
Σ2 0nT×m

0m×nT Vg

]
.

A draw for g is finally obtained through the following posterior:

g ∼MN
(
g̃,
(
W �′V �−1

ε W �)−1
)
,

g̃ =
(
W �′V �−1

ε W �)−1
W �′V �−1

ε Ŷ �

A.5 Step 5-6: Draw the indexes of the mixture in S and then a

history of volatilities (σt)
T
t=1

An important final step concerns the draw of stochastic volatilities. However, before

drawing the (unobservable) stochastic volatilities is necessary to draw the matrix S con-

taining the indexes of Normal components of the mixture, as suggested by Del Negro and

Primiceri (2015).

To start building the necessary form, recall the model formulation used previously and

transform it as:

yt = Xt · γ + A · Zt +G−1Σtεt,

G (yt −Xt · γ − A · Zt)︸ ︷︷ ︸
ỹt

= Σtεt,

ỹt = Σtεt.

Having this formulation, we adopt the same procedure as in the MAI-SV Gibbs Sampler

illustrated in the Appendix of Carriero et al. (2018), which implements the Omori et al.

(2007) procedure to approximate the logχ2
1 innovations as mixture of Normal compo-

nents.

51



A.6 Step 7: Draw a covariance matrix Qσ

Conditioning on the new (σit)
T
t=0, we can draw the covariance matrix Qσ. Indeed, recall

that:

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n

 .

But then, having a complete history of the sigmas, given the random walk law of motion,

is equivalent to having a complete histories of innovations νσ,t. Stacking the νσ,t across

time, we get:

ν∗σ︸︷︷︸
n×T

=
[
νσ,1 νσ,2 . . . νσ,T

]
,

and we can easily compute the innovations sum of squares matrix:

Sσ︸︷︷︸
n×n

= ν∗σ︸︷︷︸
n×T

ν∗′σ︸︷︷︸
T×n

.

If the prior on the matrix Qσ is a n×n Inverse Wishart with scale matrix Q̄σ and degrees

of freedom τσ,0:

Qσ ∼ IWn

(
Q̄σ, τσ,0

)
,

then the posterior is conjugate and given by:

Qσ
∣∣ (σit)Tt=0

∼ IWn

(
Sσ + Q̄σ, τσ,0 + T

)
.

B Forecasting Evaluation Tables

The following tables contain the Root Mean Squares Errors, Predictive Log Scores and

Continous Rank Probability Scores relative to the forecasting evaluation section.
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Table 1a: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)

USA
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.254 1.017∗∗∗ 1.024∗ 1.026 0.972∗∗∗ 0.976
h = 2 0.417 1.029∗∗∗ 1.032 1.045∗∗ 0.933∗∗ 0.923∗

h = 3 0.525 1.035∗∗∗ 1.061 1.073∗∗ 0.933 0.918
h = 4 0.602 1.046∗∗∗ 1.088 1.105∗∗ 0.947 0.922
h = 5 0.583 1.053∗∗∗ 1.127 1.148∗∗ 0.987 0.952
h = 6 0.553 1.048∗∗ 1.183 1.199∗∗ 1.046 1.004
h = 7 0.543 1.040∗∗ 1.242 1.255∗∗ 1.087 1.038
h = 8 0.538 1.023∗∗ 1.283 1.296∗∗ 1.096 1.054

Australia
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.203 0.983∗∗∗ 1.022∗∗∗ 1.020 1.015∗∗∗ 1.023
h = 2 0.309 0.976∗∗∗ 1.042∗∗∗ 1.046 1.035∗ 1.069
h = 3 0.401 0.971∗∗∗ 1.060∗∗∗ 1.067 1.081∗ 1.137∗

h = 4 0.485 0.974∗∗∗ 1.065∗∗∗ 1.078 1.091 1.162∗∗

h = 5 0.518 0.969∗∗∗ 1.087∗∗∗ 1.101 1.120∗ 1.198∗∗

h = 6 0.547 0.966∗∗∗ 1.105∗∗∗ 1.119∗ 1.132∗ 1.209∗∗

h = 7 0.562 0.963∗∗∗ 1.125∗∗∗ 1.137∗ 1.134∗ 1.195∗∗

h = 8 0.576 0.961∗∗∗ 1.149∗∗∗ 1.159∗ 1.133∗ 1.169∗∗

Austria
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.209 1.069∗∗∗ 1.024∗∗∗ 1.001 0.968∗∗∗ 0.948
h = 2 0.343 1.069∗∗∗ 1.020∗∗∗ 0.995 0.974∗∗∗ 0.919
h = 3 0.450 1.047∗∗∗ 1.022∗∗∗ 1.014 0.980∗ 0.920
h = 4 0.535 1.049∗∗∗ 1.027∗∗∗ 1.029 1.001 0.951
h = 5 0.575 1.062∗∗∗ 1.056∗∗∗ 1.055 1.033 0.979
h = 6 0.595 1.078∗∗∗ 1.099∗∗∗ 1.094 1.066 1.009
h = 7 0.618 1.094∗∗∗ 1.129∗∗∗ 1.125 1.097 1.039
h = 8 0.637 1.107∗∗∗ 1.148∗∗ 1.143 1.117 1.057

Belgium
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.200 0.972∗∗∗ 1.020∗∗∗ 1.054∗∗∗ 1.010 1.040
h = 2 0.331 0.980∗∗∗ 1.042∗∗∗ 1.091∗∗ 0.982 0.973
h = 3 0.438 0.990∗∗∗ 1.045∗∗∗ 1.078∗ 0.959 0.927
h = 4 0.544 1.012∗∗∗ 1.034∗∗ 1.058 0.932 0.897
h = 5 0.594 1.027∗∗∗ 1.033∗ 1.057∗ 0.925 0.891
h = 6 0.609 1.037∗∗∗ 1.039 1.066∗ 0.942 0.900
h = 7 0.616 1.041∗∗∗ 1.053 1.078 0.955 0.902
h = 8 0.611 1.041∗∗∗ 1.077 1.103 0.960 0.898

Canada
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.227 1.000∗∗∗ 1.040 1.036∗ 0.975∗∗∗ 0.988
h = 2 0.363 0.997∗∗∗ 1.047 1.040∗ 0.950∗∗∗ 0.971
h = 3 0.456 0.993∗∗∗ 1.053 1.043 0.941∗∗∗ 0.964∗

h = 4 0.530 1.006∗∗∗ 1.048 1.041 0.936∗∗∗ 0.963∗∗

h = 5 0.551 1.002∗∗∗ 1.017 1.011 0.929∗∗ 0.978∗∗

h = 6 0.560 0.989∗∗∗ 0.989 0.983 0.921∗∗ 0.992∗∗

h = 7 0.574 0.986∗∗∗ 0.986 0.980 0.920∗ 0.999
h = 8 0.588 0.984∗∗∗ 0.995 0.987 0.925 1.008

Finland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.124 0.991∗∗∗ 1.041∗∗∗ 1.022 1.098∗∗∗ 1.147∗∗∗

h = 2 0.233 1.006∗∗∗ 0.991∗∗∗ 0.963∗ 1.055∗∗ 1.108
h = 3 0.335 1.019∗∗∗ 0.973∗∗∗ 0.931∗∗ 1.013 1.073
h = 4 0.436 1.026∗∗∗ 0.966∗∗∗ 0.922∗∗ 0.985 1.046
h = 5 0.513 1.042∗∗∗ 0.961∗∗∗ 0.907∗ 0.990 1.041
h = 6 0.567 1.049∗∗∗ 0.973∗∗ 0.908 1.007 1.044
h = 7 0.606 1.056∗∗∗ 0.999∗ 0.925 1.032 1.047
h = 8 0.634 1.066∗∗∗ 1.026∗ 0.944 1.049 1.044

France
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.108 1.034∗∗∗ 0.972∗∗∗ 0.974∗∗ 1.072∗∗∗ 1.078
h = 2 0.180 1.080∗∗∗ 0.964∗∗∗ 0.956 1.089 1.091
h = 3 0.234 1.114∗∗∗ 0.991∗∗∗ 0.947 1.125 1.125
h = 4 0.292 1.144∗∗∗ 1.003∗∗∗ 0.955 1.113 1.125
h = 5 0.323 1.172∗∗∗ 1.016∗∗ 0.946 1.131 1.143
h = 6 0.341 1.196∗∗∗ 1.036∗∗ 0.937 1.169 1.173
h = 7 0.360 1.212∗∗∗ 1.050∗∗ 0.926 1.182 1.175∗∗

h = 8 0.382 1.22*** 1.059∗ 0.914 1.173 1.158∗∗

Germany
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.274 0.996∗∗∗ 0.982 0.984 1.026 1.035
h = 2 0.418 1.003∗∗∗ 0.978 0.991 1.063 1.051
h = 3 0.505 1.022∗∗∗ 1.018 1.030 1.136 1.104
h = 4 0.594 1.035∗∗∗ 1.042 1.057 1.152 1.124
h = 5 0.624 1.040∗∗∗ 1.063 1.078 1.186 1.171
h = 6 0.655 1.050∗∗∗ 1.084 1.102 1.202 1.188
h = 7 0.689 1.061∗∗∗ 1.101 1.120 1.210 1.186
h = 8 0.717 1.072∗∗∗ 1.111 1.132 1.224 1.188

Greece
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.111 1.044∗∗∗ 1.011∗∗∗ 0.996 1.138∗∗∗ 1.069∗∗∗

h = 2 0.193 0.985∗∗∗ 1.027∗∗∗ 0.984 1.161∗∗∗ 1.097∗∗∗

h = 3 0.256 0.999∗∗∗ 1.057∗∗∗ 0.985 1.169∗∗∗ 1.082∗∗∗

h = 4 0.297 0.999∗∗∗ 1.087∗∗∗ 0.988 1.193∗∗∗ 1.083∗∗

h = 5 0.306 1.004∗∗∗ 1.151∗∗∗ 1.005 1.239∗∗∗ 1.110∗∗

h = 6 0.313 1.023∗∗∗ 1.239∗∗∗ 1.045 1.277∗∗∗ 1.151∗∗

h = 7 0.312 1.065∗∗∗ 1.359∗∗∗ 1.116 1.320∗∗∗ 1.190∗∗

h = 8 0.311 1.124∗∗∗ 1.490∗∗∗ 1.206 1.336∗∗∗ 1.205∗

Italy
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.065 1.135∗∗∗ 1.032∗∗∗ 0.960∗∗∗ 1.172∗∗∗ 1.126∗∗∗

h = 2 0.128 1.074∗∗∗ 1.024∗∗∗ 0.946∗∗ 1.146∗∗∗ 1.155∗∗

h = 3 0.187 1.057∗∗∗ 1.040∗∗∗ 0.951∗ 1.116∗ 1.190
h = 4 0.250 1.057∗∗∗ 1.023∗∗∗ 0.937 1.080 1.190
h = 5 0.296 1.059∗∗∗ 1.030∗∗∗ 0.933 1.061 1.191
h = 6 0.331 1.058∗∗∗ 1.054∗∗∗ 0.939 1.049 1.185
h = 7 0.363 1.064∗∗∗ 1.071∗∗∗ 0.940 1.027 1.160
h = 8 0.387 1.066∗∗∗ 1.101∗∗∗ 0.956 0.998 1.137

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 1b: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)

Japan
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.142 1.131∗∗∗ 1.092∗∗∗ 1.018 1.143∗∗∗ 1.119∗∗∗

h = 2 0.230 1.180∗∗∗ 1.113∗∗∗ 0.969∗ 1.218∗∗∗ 1.123∗

h = 3 0.313 1.230∗∗∗ 1.131∗∗∗ 0.927∗∗ 1.274∗∗∗ 1.134
h = 4 0.400 1.253∗∗∗ 1.159∗∗∗ 0.908∗∗ 1.273∗∗∗ 1.107
h = 5 0.464 1.289∗∗∗ 1.178∗∗∗ 0.867∗∗∗ 1.278∗∗∗ 1.085
h = 6 0.517 1.312∗∗∗ 1.21*** 0.851∗∗∗ 1.262∗∗∗ 1.063
h = 7 0.563 1.322∗∗∗ 1.243∗∗∗ 0.848∗∗∗ 1.234∗∗∗ 1.033
h = 8 0.602 1.330∗∗∗ 1.264∗∗∗ 0.842∗∗∗ 1.208∗∗∗ 1.016

Luxembourg
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.194 0.998∗∗∗ 1.013∗∗∗ 1.024 1.020 1.042∗∗

h = 2 0.307 1.015∗∗∗ 1.014∗∗∗ 1.030 1.027 1.042
h = 3 0.377 1.027∗∗∗ 1.029∗∗∗ 1.042 1.038 1.048
h = 4 0.448 1.033∗∗∗ 1.046∗∗ 1.059 1.021 1.029
h = 5 0.473 1.041∗∗∗ 1.066∗∗ 1.083 1.027 1.033
h = 6 0.474 1.038∗∗∗ 1.101∗∗ 1.118 1.046 1.046
h = 7 0.485 1.030∗∗∗ 1.140∗∗ 1.155∗ 1.069 1.062
h = 8 0.492 1.024∗∗∗ 1.168∗∗∗ 1.182∗ 1.096 1.086

Netherlands
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.156 0.980∗∗∗ 1.030∗∗∗ 1.012 1.157∗∗∗ 1.085∗∗

h = 2 0.231 0.991∗∗∗ 1.032∗∗∗ 1.007 1.231∗∗∗ 1.168∗∗

h = 3 0.283 1.000∗∗∗ 1.065∗∗∗ 1.040 1.267∗∗∗ 1.234∗

h = 4 0.359 1.009∗∗∗ 1.033∗∗∗ 1.025 1.200∗ 1.201
h = 5 0.400 1.032∗∗∗ 1.025∗∗∗ 1.006 1.168 1.186
h = 6 0.436 1.051∗∗∗ 1.033∗∗ 1.005 1.130 1.158
h = 7 0.480 1.068∗∗∗ 1.019∗∗ 0.996 1.090 1.110
h = 8 0.510 1.083∗∗∗ 1.015∗ 0.987 1.072 1.075

New Zealand
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.153 0.962∗∗∗ 0.966∗∗∗ 0.959 1.101∗∗∗ 1.082∗

h = 2 0.259 0.935∗∗∗ 0.928∗∗∗ 0.873 1.140∗∗ 1.134
h = 3 0.354 0.919∗∗∗ 0.925∗∗ 0.813 1.133∗ 1.141
h = 4 0.437 0.922∗∗∗ 0.942∗∗ 0.811 1.102∗∗ 1.120
h = 5 0.491 0.921∗∗∗ 0.948∗∗ 0.782 1.064∗∗ 1.085∗∗

h = 6 0.532 0.921∗∗∗ 0.964∗∗ 0.765 1.036∗ 1.045∗

h = 7 0.561 0.931∗∗∗ 0.986∗∗ 0.760 1.008 0.998
h = 8 0.575 0.947∗∗∗ 1.021∗∗ 0.768 0.984 0.951

Norway
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.248 1.004∗∗∗ 1.028∗∗∗ 0.999 0.965 0.961
h = 2 0.350 1.090∗∗∗ 1.086∗∗∗ 1.012 0.957 0.940∗

h = 3 0.443 1.121∗∗∗ 1.121∗∗∗ 1.014 0.936 0.929∗

h = 4 0.538 1.134∗∗∗ 1.145∗∗∗ 1.020 0.917 0.905∗

h = 5 0.578 1.162∗∗∗ 1.171∗∗∗ 1.001 0.938 0.903
h = 6 0.601 1.165∗∗∗ 1.224∗∗∗ 1.014 0.959 0.901
h = 7 0.614 1.157∗∗∗ 1.282∗∗∗ 1.036 0.973 0.898
h = 8 0.630 1.140∗∗∗ 1.327∗∗∗ 1.063 0.972 0.889

Portugal
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.079 1.500∗∗∗ 1.375∗∗∗ 1.013∗∗∗ 1.361∗∗∗ 1.085∗∗∗

h = 2 0.136 1.341∗∗∗ 1.384∗∗∗ 1.014∗∗∗ 1.287∗∗∗ 1.064∗∗∗

h = 3 0.182 1.261∗∗∗ 1.446∗∗∗ 1.023∗ 1.274∗∗∗ 1.094∗∗∗

h = 4 0.227 1.148∗∗∗ 1.504∗∗∗ 1.035 1.276∗∗∗ 1.112∗∗∗

h = 5 0.257 1.080∗∗∗ 1.580∗∗∗ 1.048 1.267∗∗∗ 1.099∗∗∗

h = 6 0.286 1.032∗∗∗ 1.637∗∗∗ 1.058 1.220∗∗∗ 1.076∗∗∗

h = 7 0.312 0.995∗∗∗ 1.690∗∗∗ 1.079 1.154∗∗∗ 1.050∗∗

h = 8 0.335 0.998∗∗∗ 1.729∗∗∗ 1.093 1.094∗∗∗ 1.032∗∗

Spain
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.116 0.982∗∗∗ 1.012∗∗∗ 0.984∗∗ 1.065∗∗∗ 0.989
h = 2 0.204 0.983∗∗∗ 0.987∗∗∗ 0.936∗∗ 1.028∗∗∗ 0.999
h = 3 0.277 0.994∗∗∗ 1.001∗∗∗ 0.922∗∗ 1.006 1.011
h = 4 0.341 1.017∗∗∗ 1.013∗∗∗ 0.911∗ 0.979 1.012
h = 5 0.385 1.026∗∗∗ 1.027∗∗∗ 0.894∗ 0.968 1.018
h = 6 0.421 1.026∗∗∗ 1.048∗∗∗ 0.882∗∗ 0.955 1.002
h = 7 0.457 1.028∗∗∗ 1.063∗∗∗ 0.875∗ 0.934 0.977
h = 8 0.488 1.033∗∗∗ 1.081∗∗∗ 0.874∗ 0.916 0.968

Sweden
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.235 1.024∗∗∗ 1.038∗∗∗ 1.033 1.047 1.093∗

h = 2 0.383 1.044∗∗∗ 1.053∗∗ 1.052 1.056 1.070
h = 3 0.499 1.050∗∗∗ 1.089∗∗ 1.077 1.075 1.055
h = 4 0.609 1.059∗∗∗ 1.108∗∗ 1.093 1.031 0.992
h = 5 0.668 1.069∗∗∗ 1.126∗∗ 1.105 1.014 0.966
h = 6 0.698 1.081∗∗∗ 1.170∗∗∗ 1.138 1.012 0.956
h = 7 0.721 1.097∗∗∗ 1.215∗∗∗ 1.172 1.007 0.942
h = 8 0.740 1.109∗∗∗ 1.257∗∗∗ 1.206 1.01 0.938

Switzerland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.194 1.085∗∗∗ 1.017∗∗∗ 0.988∗∗∗ 1.155∗∗∗ 1.165∗∗∗

h = 2 0.355 1.081∗∗∗ 0.988∗∗ 0.956∗∗∗ 1.143∗ 1.157∗

h = 3 0.496 1.083∗∗∗ 0.976 0.941∗∗∗ 1.125 1.128
h = 4 0.609 1.097∗∗∗ 0.974 0.937∗∗ 1.111 1.098
h = 5 0.673 1.121∗∗∗ 0.985 0.941∗ 1.114 1.071
h = 6 0.705 1.152∗∗∗ 1.012 0.952∗ 1.137 1.052
h = 7 0.733 1.179∗∗∗ 1.041 0.968 1.166 1.037
h = 8 0.762 1.198∗∗∗ 1.067 0.982 1.199 1.030

United Kingdom
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.114 1.054∗∗∗ 1.008∗∗∗ 0.989∗∗∗ 1.201∗∗∗ 1.112
h = 2 0.184 1.062∗∗∗ 1.044∗∗∗ 1.003∗∗∗ 1.245∗∗ 1.138
h = 3 0.245 1.069∗∗∗ 1.057∗∗∗ 0.980∗∗ 1.237 1.154
h = 4 0.316 1.073∗∗∗ 1.035∗∗∗ 0.939∗∗ 1.173 1.132
h = 5 0.359 1.077∗∗∗ 1.043∗∗∗ 0.921∗ 1.122 1.104
h = 6 0.396 1.077∗∗∗ 1.056∗∗∗ 0.911∗ 1.088 1.080
h = 7 0.433 1.074∗∗∗ 1.073∗∗ 0.918∗ 1.063 1.054
h = 8 0.459 1.072∗∗∗ 1.107∗∗ 0.947∗ 1.047 1.035

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 2a: Average Log Predictive Scores (scores for MAI-AR-SV, score differences in all others)

USA
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.166 −0.292∗∗∗ −1.263 −0.032 −1.506 −0.022
h = 2 −0.343 −0.277∗∗∗ −1.161 −0.063∗ −0.971 −0.016
h = 3 −0.600 −0.267∗∗∗ −0.532 −0.094∗ −0.410 −0.044
h = 4 −0.805 −0.241∗∗∗ −0.229 −0.130∗∗ −0.110 −0.048
h = 5 −0.842 −0.276∗∗∗ −0.180∗ −0.154∗∗ −0.053 −0.056
h = 6 −0.867 −0.308∗∗∗ −0.162∗∗ −0.180∗∗∗ −0.052 −0.073
h = 7 −0.892 −0.337∗∗∗ −0.180∗∗ −0.208∗∗∗ −0.067 −0.086
h = 8 −0.927 −0.343∗∗∗ −0.182∗∗ −0.223∗∗∗ −0.064 −0.087

Australia
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.206 −0.334∗∗∗ −0.139∗∗ −0.044 −0.069 0.025
h = 2 −0.291 −0.197∗∗ −0.052 −0.050 0.012 −0.024
h = 3 −0.552 −0.163∗ −0.053 −0.083 −0.013 −0.080
h = 4 −0.722 −0.169 −0.075 −0.104 −0.026 −0.112
h = 5 −0.770 −0.215∗ −0.136 −0.139 −0.067 −0.139∗∗

h = 6 −0.809 −0.238∗∗ −0.183∗ −0.164∗ −0.091 −0.150∗

h = 7 −0.833 −0.260∗∗ −0.216∗∗ −0.182∗ −0.105 −0.134∗

h = 8 −0.871 −0.256∗∗ −0.233∗∗ −0.204∗ −0.105 −0.114

Austria
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.126 −0.516∗∗∗ −0.265∗∗∗ 0.004 −0.146∗ 0.052
h = 2 −0.377 −0.386∗∗∗ −0.172∗ −0.007 −0.044 0.102
h = 3 −0.696 −0.241∗ −0.078 0.022 0.047 0.143
h = 4 −0.863 −0.195 −0.064 −0.040 0.045 0.088
h = 5 −0.919 −0.213∗∗ −0.102 −0.081 0.002 0.045
h = 6 −0.957 −0.227∗∗ −0.132 −0.128 −0.023 0.021
h = 7 −1.016 −0.212∗ −0.131 −0.170∗ −0.032 0.000
h = 8 −1.059 −0.206 −0.129 −0.204∗∗ −0.039 −0.014

Belgium
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.239 −0.283∗∗∗ −0.110∗∗ −0.040 −0.074 −0.058
h = 2 −0.191 −0.307∗∗∗ −0.189∗∗∗ −0.101∗∗∗ −0.151∗ −0.535
h = 3 −0.453 −0.288∗∗ −0.247∗∗ −0.111∗ −0.376∗ −0.650
h = 4 −0.723 −0.226∗ −0.191∗ −0.106 −0.232 −0.694
h = 5 −0.822 −0.240∗∗ −0.151∗ −0.125∗ −0.051 0.050
h = 6 −0.863 −0.267∗∗ −0.154∗ −0.152∗∗ −0.038 0.060
h = 7 −0.912 −0.270∗∗∗ −0.140∗ −0.172∗∗∗ 0.007 0.077
h = 8 −0.942 −0.273∗∗∗ −0.141∗ −0.195∗∗∗ 0.046 0.096

Canada
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.075 −0.119∗∗ −0.064 −0.086∗∗ −0.032 −0.003
h = 2 −0.352 −0.130∗∗ −0.127 −0.109∗∗ −0.147 −0.004
h = 3 −0.556 −0.160∗∗ −0.127 −0.137∗ −0.070 −0.020
h = 4 −0.705 −0.173∗∗ −0.126 −0.122 −0.066 −0.005
h = 5 −0.758 −0.193∗∗ −0.096 −0.109 0.030 0.019
h = 6 −0.789 −0.211∗∗ −0.086 −0.104 0.063 0.036
h = 7 −0.826 −0.227∗∗ −0.095 −0.124 0.069 0.047
h = 8 −0.862 −0.232∗∗ −0.105 −0.149∗ 0.067 0.034

Finland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.651 −0.550∗∗∗ −0.271∗∗∗ −0.022 −0.199∗∗∗ −0.108∗∗

h = 2 0.055 −0.478∗∗∗ −0.204∗∗∗ −0.049 −0.111 −0.114
h = 3 −0.301 −0.402∗∗∗ −0.156∗ 0.014 −0.045 −0.091
h = 4 −0.581 −0.307∗∗ −0.093 −0.018 0.020 −0.042
h = 5 −0.759 −0.259∗ −0.056 0.018 0.048 −0.010
h = 6 −0.850 −0.249∗ −0.068 −0.007 0.040 −0.004
h = 7 −0.924 −0.235∗ −0.074 −0.031 0.032 0.014
h = 8 −0.978 −0.232 −0.082 −0.056 0.020 0.022

France
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.806 −0.429∗∗∗ −0.153∗∗∗ 0.028 −0.119∗∗ −0.072∗

h = 2 0.340 −0.519∗∗∗ −0.190∗∗∗ −0.003 −0.149∗ −0.088
h = 3 0.078 −0.550∗∗∗ −0.219∗∗∗ −0.032 −0.172 −0.129
h = 4 −0.163 −0.488∗∗∗ −0.182∗ −0.040 −0.142 −0.124
h = 5 −0.263 −0.502∗∗∗ −0.207∗∗ −0.043 −0.175 −0.136
h = 6 −0.333 −0.514∗∗∗ −0.223∗∗ −0.046 −0.206∗ −0.163∗

h = 7 −0.410 −0.503∗∗∗ −0.221∗∗ −0.043 −0.211∗ −0.167∗∗

h = 8 −0.479 −0.498∗∗∗ −0.216∗∗ −0.039 −0.211∗ −0.171∗∗

Germany
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 −0.072 −0.178∗∗∗ −0.035 −0.014 −0.062 −0.052
h = 2 −0.504 −0.172∗∗ −0.023 −0.037 −0.073 −0.055
h = 3 −0.706 −0.188∗∗ −0.054 −0.081 −0.127 −0.099
h = 4 −0.904 −0.162∗ −0.047 −0.103∗∗ −0.092 −0.105
h = 5 −0.994 −0.165∗ −0.039 −0.127∗∗ −0.079 −0.092
h = 6 −1.068 −0.162∗ −0.042 −0.139∗∗∗ −0.071 −0.091
h = 7 −1.140 −0.151∗ −0.036 −0.153∗∗∗ −0.064 −0.073
h = 8 −1.194 −0.141∗ −0.031 −0.155∗∗∗ −0.059 −0.067

Greece
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.839 −0.761∗∗∗ −0.428∗∗∗ −0.002 −0.369∗∗∗ −0.104∗∗∗

h = 2 0.314 −0.752∗∗∗ −0.414∗∗∗ −0.003 −0.339∗∗∗ −0.109∗∗

h = 3 0.035 −0.777∗∗∗ −0.423∗∗∗ −0.022 −0.340∗∗∗ −0.122∗

h = 4 −0.139 −0.768∗∗∗ −0.424∗∗∗ −0.039 −0.342∗∗∗ −0.131∗

h = 5 −0.216 −0.793∗∗∗ −0.458∗∗∗ −0.047 −0.372∗∗∗ −0.145∗∗

h = 6 −0.269 −0.806∗∗∗ −0.491∗∗∗ −0.056 −0.391∗∗∗ −0.170∗∗

h = 7 −0.306 −0.821∗∗∗ −0.527∗∗∗ −0.067 −0.405∗∗∗ −0.187∗∗∗

h = 8 −0.350 −0.820∗∗∗ −0.545∗∗∗ −0.081 −0.399∗∗∗ −0.198∗∗∗

Italy
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 1.262 −0.956∗∗∗ −0.616∗∗∗ 0.101∗∗∗ −0.431∗∗∗ −0.146∗∗∗

h = 2 0.638 −0.843∗∗∗ −0.522∗∗∗ 0.063 −0.283∗∗∗ −0.142∗∗∗

h = 3 0.254 −0.752∗∗∗ −0.451∗∗∗ 0.043 −0.179 −0.139∗

h = 4 −0.026 −0.644∗∗∗ −0.375∗∗ 0.039 −0.117 −0.125
h = 5 −0.190 −0.596∗∗∗ −0.352∗∗ 0.030 −0.111 −0.127
h = 6 −0.298 −0.574∗∗∗ −0.350∗∗ 0.029 −0.128 −0.131
h = 7 −0.394 −0.547∗∗∗ −0.338∗∗ 0.029 −0.128 −0.126
h = 8 −0.468 −0.529∗∗∗ −0.338∗∗ 0.012 −0.124 −0.126

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 2b: Average Log Predictive Scores (scores for MAI-AR-SV, score differences in all others)

Japan
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.505 −0.666∗∗∗ −0.356∗∗∗ 0.000 −0.251∗∗∗ −0.094∗∗

h = 2 0.033 −0.609∗∗∗ −0.331∗∗∗ 0.051 −0.243∗∗∗ −0.091
h = 3 −0.270 −0.553∗∗∗ −0.306∗∗∗ 0.093∗ −0.241∗∗ −0.082
h = 4 −0.537 −0.475∗∗∗ −0.260∗∗ 0.128∗∗ −0.201 −0.040
h = 5 −0.671 −0.474∗∗∗ −0.274∗∗ 0.151∗∗ −0.214 −0.037
h = 6 −0.788 −0.453∗∗∗ −0.267∗∗ 0.167∗∗ −0.197 −0.016
h = 7 −0.870 −0.445∗∗∗ −0.276∗∗ 0.172∗∗ −0.190 −0.007
h = 8 −0.946 −0.426∗∗∗ −0.270∗∗ 0.181∗∗ −0.167 0.008

Luxembourg
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.245 −0.302∗∗∗ −0.094∗∗ −0.075 −0.079∗∗ −0.027
h = 2 −0.199 −0.304∗∗∗ −0.120∗∗∗ −0.072∗ −0.174 −0.038
h = 3 −0.426 −0.307∗∗∗ −0.130∗∗ −0.070 −0.19 −0.055
h = 4 −0.619 −0.282∗∗∗ −0.127 −0.105∗ −0.048 −0.054
h = 5 −0.687 −0.312∗∗∗ −0.149∗ −0.117∗∗ −0.042 −0.060
h = 6 −0.718 −0.332∗∗∗ −0.182∗∗ −0.133∗∗ −0.038 −0.054
h = 7 −0.766 −0.332∗∗∗ −0.193∗∗∗ −0.145∗∗ −0.027 −0.058
h = 8 −0.803 −0.333∗∗∗ −0.207∗∗∗ −0.148∗∗ −0.025 −0.076

Netherlands
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.388 −0.623∗∗∗ −0.347∗∗∗ 0.020 −0.237∗∗∗ −0.064
h = 2 −0.002 −0.625∗∗∗ −0.342∗∗∗ −0.006 −0.219∗∗∗ −0.106∗

h = 3 −0.213 −0.604∗∗∗ −0.338∗∗∗ −0.037 −0.211∗∗ −0.130∗

h = 4 −0.441 −0.508∗∗∗ −0.261∗∗ −0.030 −0.151 −0.108
h = 5 −0.540 −0.500∗∗∗ −0.255∗∗ −0.032 −0.141 −0.111
h = 6 −0.634 −0.479∗∗∗ −0.232∗∗ −0.022 −0.123 −0.109
h = 7 −0.729 −0.451∗∗∗ −0.197∗ −0.016 −0.108 −0.102
h = 8 −0.792 −0.438∗∗∗ −0.176 −0.006 −0.099 −0.105

New Zealand
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.501 −0.511∗∗∗ −0.227∗∗∗ 0.009 −0.198∗∗∗ −0.056∗

h = 2 0.008 −0.512∗∗∗ −0.226∗∗∗ −0.008 −0.195∗∗∗ −0.087∗

h = 3 −0.249 −0.524∗∗∗ −0.264∗∗∗ −0.015 −0.214∗∗∗ −0.112∗

h = 4 −0.442 −0.481∗∗∗ −0.259∗∗ −0.014 −0.189∗∗ −0.109∗

h = 5 −0.540 −0.465∗∗∗ −0.275∗ 0.012 −0.171∗ −0.083
h = 6 −0.591 −0.463∗∗∗ −0.308∗ 0.024 −0.186 −0.079
h = 7 −0.645 −0.450∗∗∗ −0.319∗ 0.037 −0.183 −0.062
h = 8 −0.691 −0.436∗∗∗ −0.323∗ 0.041 −0.167 −0.048

Norway
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.040 −0.350∗∗∗ −0.162∗∗∗ 0.000 −0.064 0.003
h = 2 −0.361 −0.311∗∗∗ −0.152∗∗ −0.019 0.001 0.032
h = 3 −0.624 −0.265∗∗∗ −0.144 −0.047 0.068 0.058
h = 4 −0.836 −0.210∗∗ −0.129 −0.065 0.136 0.121
h = 5 −0.940 −0.184 −0.128 −0.052 0.152 0.165
h = 6 −0.984 −0.188 −0.167 −0.070 0.144 0.198∗

h = 7 −0.995 −0.204 −0.218 −0.095 0.115 0.201∗

h = 8 −1.022 −0.204 −0.249∗ −0.120 0.110 0.201∗

Portugal
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.998 −1.281∗∗∗ −0.973∗∗∗ 0.094∗∗∗ −0.848∗∗∗ −0.194∗∗∗

h = 2 0.525 −1.049∗∗∗ −0.818∗∗∗ 0.045 −0.673∗∗∗ −0.193∗∗∗

h = 3 0.258 −0.949∗∗∗ −0.765∗∗∗ −0.010 −0.581∗∗∗ −0.210∗∗∗

h = 4 0.051 −0.870∗∗∗ −0.737∗∗∗ −0.044 −0.497∗∗∗ −0.208∗∗

h = 5 −0.067 −0.803∗∗∗ −0.738∗∗∗ −0.064 −0.464∗∗∗ −0.212∗

h = 6 −0.155 −0.753∗∗∗ −0.744∗∗∗ −0.092 −0.429∗∗∗ −0.217∗

h = 7 −0.232 −0.698∗∗∗ −0.750∗∗∗ −0.106 −0.390∗∗ −0.213
h = 8 −0.304 −0.650∗∗∗ −0.738∗∗∗ −0.107 −0.345∗∗ −0.202

Spain
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.734 −0.670∗∗∗ −0.393∗∗∗ 0.029 −0.236∗∗∗ −0.040
h = 2 0.189 −0.520∗∗∗ −0.286∗∗ 0.071 −0.136 −0.050
h = 3 −0.196 −0.376 −0.173 0.159 −0.005 0.022
h = 4 −0.429 −0.310 −0.127 0.152 0.052 0.019
h = 5 −0.485 −0.361∗∗ −0.201 0.089 −0.001 −0.036
h = 6 −0.577 −0.340∗ −0.205 0.094 0.002 −0.033
h = 7 −0.653 −0.328∗∗ −0.212 0.065 0.011 −0.020
h = 8 −0.729 −0.308∗∗ −0.204 0.058 0.027 −0.005

Sweden
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.108 −0.320∗∗∗ −0.146∗∗ −0.046 −0.102 −0.036
h = 2 −0.425 −0.184∗ −0.092 −0.140 −0.086 −0.012
h = 3 −0.784 −0.052 −0.025 −0.567 −0.047 0.063
h = 4 −0.981 −0.044 −0.052 −0.420 −0.022 0.073
h = 5 −1.081 −0.040 −0.060 −0.095 0.020 0.105
h = 6 −1.098 −0.083 −0.134 −0.157 0.010 0.089
h = 7 −1.103 −0.125 −0.208 −0.209 −0.006 0.071
h = 8 −1.118 −0.145 −0.256∗ −0.272∗∗ −0.014 0.047

Switzerland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.199 −0.374∗∗∗ −0.103∗∗∗ 0.020 −0.135∗∗∗ −0.111∗∗∗

h = 2 −0.362 −0.297∗∗∗ −0.072 0.021 −0.148∗∗ −0.134
h = 3 −0.715 −0.215∗∗ −0.021 0.000 −0.118 −0.104
h = 4 −0.935 −0.179∗∗ 0.008 −0.001 −0.094 −0.078
h = 5 −1.048 −0.183∗∗ 0.007 −0.010 −0.076 −0.036
h = 6 −1.102 −0.201∗∗ −0.019 −0.016 −0.088 −0.009
h = 7 −1.153 −0.213∗∗∗ −0.029 −0.013 −0.102 0.009
h = 8 −1.197 −0.215∗∗ −0.050 −0.027 −0.126 0.007

United Kingdom
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.738 −0.681∗∗∗ −0.351∗∗∗ 0.106∗ −0.284∗∗∗ −0.082∗∗∗

h = 2 0.227 −0.663∗∗∗ −0.356∗∗∗ 0.108 −0.245∗∗∗ −0.074∗

h = 3 −0.061 −0.645∗∗∗ −0.364∗∗∗ 0.141 −0.229∗∗∗ −0.091∗

h = 4 −0.287 −0.579∗∗∗ −0.330∗∗∗ 0.176 −0.202∗∗ −0.096
h = 5 −0.414 −0.553∗∗∗ −0.319∗∗ 0.191 −0.187∗∗ −0.101
h = 6 −0.500 −0.536∗∗∗ −0.321∗∗ 0.182 −0.188∗∗ −0.110
h = 7 −0.580 −0.520∗∗∗ −0.316∗∗ 0.163 −0.189∗∗ −0.108
h = 8 −0.636 −0.511∗∗∗ −0.324∗∗∗ 0.107 −0.204∗ −0.121

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels

56



Table 3a: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

USA
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.123 1.098∗∗∗ 1.028 1.02 0.993 1.000
h = 2 0.206 1.115∗∗∗ 1.060∗ 1.042∗∗ 0.987 0.966
h = 3 0.264 1.126∗∗∗ 1.097∗∗ 1.071∗∗ 0.998 0.970
h = 4 0.315 1.126∗∗∗ 1.109∗∗ 1.106∗∗ 0.993 0.966
h = 5 0.318 1.155∗∗∗ 1.125∗∗ 1.141∗∗∗ 1.006 0.983
h = 6 0.316 1.172∗∗∗ 1.153∗∗∗ 1.185∗∗∗ 1.028 1.019
h = 7 0.319 1.194∗∗∗ 1.195∗∗∗ 1.227∗∗∗ 1.056 1.055
h = 8 0.327 1.197∗∗ 1.218∗∗∗ 1.249∗∗∗ 1.052 1.063

Australia
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.107 1.191∗∗∗ 1.081∗∗ 1.045 1.033 1.004
h = 2 0.176 1.086∗∗ 1.041 1.040 1.008 1.039
h = 3 0.231 1.051 1.055 1.071 1.043 1.107
h = 4 0.277 1.056 1.063 1.081 1.063 1.141∗

h = 5 0.293 1.075 1.103 1.117 1.095 1.175∗∗

h = 6 0.306 1.090 1.137 1.143 1.107 1.184∗∗

h = 7 0.312 1.107 1.172∗ 1.165 1.109 1.165∗

h = 8 0.320 1.112 1.196∗ 1.186 1.107 1.141

Austria
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.114 1.404∗∗∗ 1.172∗∗∗ 1.006 1.065 0.951
h = 2 0.191 1.268∗∗∗ 1.102∗ 1.002 1.001 0.918
h = 3 0.248 1.192∗∗∗ 1.087 1.031 0.998 0.929
h = 4 0.301 1.138∗∗∗ 1.066 1.053 1.001 0.963
h = 5 0.327 1.142∗∗∗ 1.092 1.081 1.027 0.987
h = 6 0.343 1.148∗∗∗ 1.124 1.121∗ 1.052 1.008
h = 7 0.361 1.149∗∗∗ 1.142 1.158∗∗ 1.074 1.030
h = 8 0.375 1.153∗∗ 1.152 1.179∗∗ 1.088 1.043

Belgium
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.107 1.128∗∗∗ 1.053∗∗ 1.047 1.050 1.060
h = 2 0.169 1.139∗∗∗ 1.099∗∗∗ 1.096∗∗ 1.055 1.029
h = 3 0.215 1.143∗∗∗ 1.117∗∗ 1.103∗∗ 1.042 0.989
h = 4 0.274 1.122∗∗∗ 1.087∗ 1.089∗ 0.999 0.944
h = 5 0.309 1.127∗∗∗ 1.083 1.099∗ 0.975 0.921
h = 6 0.325 1.144∗∗∗ 1.095 1.121∗∗ 0.973 0.913
h = 7 0.339 1.147∗∗∗ 1.101 1.135∗∗ 0.972 0.910
h = 8 0.346 1.150∗∗∗ 1.117∗ 1.158∗∗∗ 0.959 0.900

Canada
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.126 1.044∗∗ 1.039 1.049∗ 0.983 0.996
h = 2 0.196 1.048∗ 1.060 1.060 0.969 0.984
h = 3 0.246 1.053∗ 1.073 1.073 0.976 0.993
h = 4 0.285 1.065∗∗ 1.060 1.063 0.971 0.990
h = 5 0.297 1.081∗∗ 1.039 1.044 0.968 1.001
h = 6 0.305 1.087∗∗ 1.029 1.034 0.945 0.994
h = 7 0.314 1.093∗∗ 1.034 1.048 0.931 0.983
h = 8 0.324 1.102∗ 1.046 1.063 0.922 0.981

Finland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.069 1.368∗∗∗ 1.155∗∗∗ 1.014 1.141∗∗∗ 1.133∗∗

h = 2 0.128 1.295∗∗∗ 1.091∗ 0.970 1.092 1.129
h = 3 0.184 1.232∗∗∗ 1.052 0.948 1.046 1.107
h = 4 0.241 1.172∗∗∗ 1.027 0.945 1.003 1.068
h = 5 0.286 1.149∗∗ 1.011 0.934 0.987 1.044
h = 6 0.319 1.138∗∗ 1.017 0.942 0.981 1.026
h = 7 0.345 1.129∗ 1.035 0.966 0.984 1.009
h = 8 0.365 1.13* 1.053 0.986 0.989 0.997

France
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.059 1.271∗∗∗ 1.053∗ 0.966 1.108∗∗ 1.090∗

h = 2 0.095 1.382∗∗∗ 1.083∗ 0.984 1.146 1.120
h = 3 0.122 1.436∗∗∗ 1.124∗ 0.998 1.199 1.180
h = 4 0.156 1.392∗∗∗ 1.105 1.007 1.172 1.174
h = 5 0.174 1.407∗∗∗ 1.121 1.002 1.191 1.185
h = 6 0.188 1.421∗∗∗ 1.137 0.995 1.214 1.201∗

h = 7 0.202 1.420∗∗∗ 1.140 0.989 1.215 1.193∗∗

h = 8 0.217 1.416∗∗∗ 1.144 0.980 1.200 1.175∗∗

Germany
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.147 1.072∗∗∗ 0.989 0.992 1.028 1.053
h = 2 0.225 1.079∗∗ 0.981 0.995 1.050 1.055
h = 3 0.274 1.093∗∗ 1.027 1.042 1.102 1.097
h = 4 0.329 1.089∗∗ 1.046 1.070 1.100 1.101
h = 5 0.354 1.100∗∗ 1.059 1.096∗ 1.107 1.116
h = 6 0.379 1.099∗∗ 1.065 1.114∗ 1.122 1.124
h = 7 0.405 1.1** 1.073 1.128∗∗ 1.132 1.12
h = 8 0.427 1.098∗∗ 1.077 1.134∗∗ 1.142 1.115

Greece
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.059 1.597∗∗∗ 1.252∗∗∗ 1.003 1.270∗∗∗ 1.085∗∗

h = 2 0.101 1.563∗∗∗ 1.250∗∗∗ 1.000 1.267∗∗∗ 1.107∗

h = 3 0.133 1.616∗∗∗ 1.286∗∗∗ 1.016 1.286∗∗∗ 1.120∗

h = 4 0.158 1.615∗∗∗ 1.300∗∗ 1.025 1.305∗∗∗ 1.124∗

h = 5 0.167 1.667∗∗∗ 1.366∗∗ 1.043 1.351∗∗∗ 1.150∗

h = 6 0.174 1.711∗∗∗ 1.440∗∗∗ 1.076 1.385∗∗∗ 1.184∗

h = 7 0.178 1.761∗∗∗ 1.533∗∗∗ 1.117 1.415∗∗∗ 1.209∗

h = 8 0.182 1.800∗∗∗ 1.609∗∗∗ 1.164 1.408∗∗∗ 1.215∗

Italy
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.036 2.026∗∗∗ 1.509∗∗∗ 0.948 1.370∗∗∗ 1.158∗∗∗

h = 2 0.068 1.797∗∗∗ 1.388∗∗∗ 0.959 1.238∗ 1.174∗∗

h = 3 0.101 1.651∗∗∗ 1.321∗∗∗ 0.968 1.150 1.193
h = 4 0.136 1.502∗∗∗ 1.243∗∗ 0.957 1.089 1.182
h = 5 0.163 1.442∗∗∗ 1.221 0.954 1.074 1.178
h = 6 0.183 1.408∗∗∗ 1.224 0.960 1.078 1.173
h = 7 0.201 1.384∗∗∗ 1.225 0.964 1.07 1.155
h = 8 0.216 1.376∗∗∗ 1.239 0.983 1.054 1.14

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 3b: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

Japan
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.079 1.558∗∗∗ 1.253∗∗∗ 1.021 1.209∗∗∗ 1.117∗∗∗

h = 2 0.129 1.502∗∗∗ 1.236∗∗∗ 0.962 1.234∗∗ 1.117
h = 3 0.177 1.456∗∗∗ 1.219∗∗∗ 0.911∗ 1.252∗ 1.115
h = 4 0.226 1.423∗∗∗ 1.227∗∗∗ 0.889∗ 1.245 1.083
h = 5 0.264 1.418∗∗∗ 1.235∗∗∗ 0.851∗∗ 1.247 1.053
h = 6 0.299 1.406∗∗∗ 1.244∗∗∗ 0.835∗∗ 1.223 1.025
h = 7 0.328 1.397∗∗∗ 1.266∗∗∗ 0.831∗∗ 1.199 1.000
h = 8 0.353 1.384∗∗∗ 1.276∗∗∗ 0.826∗∗ 1.169 0.985

Luxembourg
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.103 1.171∗∗∗ 1.054∗∗ 1.031 1.036 1.030
h = 2 0.164 1.168∗∗∗ 1.051 1.043 1.047 1.047
h = 3 0.201 1.191∗∗∗ 1.076 1.061 1.060 1.059
h = 4 0.244 1.177∗∗∗ 1.089 1.087 1.034 1.037
h = 5 0.263 1.190∗∗∗ 1.107 1.106∗ 1.035 1.036
h = 6 0.269 1.206∗∗∗ 1.150∗∗ 1.141∗∗ 1.038 1.034
h = 7 0.280 1.201∗∗∗ 1.179∗∗ 1.171∗∗ 1.053 1.051
h = 8 0.289 1.197∗∗∗ 1.196∗∗ 1.185∗∗ 1.066 1.066

Netherlands
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.087 1.483∗∗∗ 1.233∗∗∗ 1.006 1.230∗∗∗ 1.096∗

h = 2 0.130 1.484∗∗∗ 1.224∗∗∗ 1.017 1.250∗∗ 1.151∗

h = 3 0.160 1.465∗∗∗ 1.239∗∗∗ 1.053 1.271∗ 1.212∗

h = 4 0.199 1.379∗∗∗ 1.184∗∗ 1.054 1.208 1.189
h = 5 0.224 1.361∗∗∗ 1.163 1.038 1.172 1.169
h = 6 0.246 1.347∗∗∗ 1.152 1.029 1.133 1.147
h = 7 0.275 1.311∗∗∗ 1.112 1.018 1.09 1.112
h = 8 0.295 1.303∗∗∗ 1.089 1.005 1.071 1.090

New Zealand
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.082 1.313∗∗∗ 1.085∗∗ 0.969 1.152∗∗∗ 1.067
h = 2 0.139 1.276∗∗∗ 1.061 0.933 1.170∗∗ 1.114
h = 3 0.186 1.265∗∗∗ 1.080 0.904 1.179∗ 1.137
h = 4 0.229 1.213∗∗∗ 1.081 0.899 1.135 1.120
h = 5 0.256 1.193∗∗ 1.093 0.872 1.105 1.089
h = 6 0.274 1.181∗ 1.118 0.849 1.089 1.061
h = 7 0.289 1.180∗ 1.144 0.841 1.068 1.020
h = 8 0.298 1.187∗ 1.174 0.844 1.052 0.983

Norway
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.132 1.189∗∗∗ 1.084∗∗∗ 0.996 1.007 0.979
h = 2 0.194 1.206∗∗∗ 1.115∗∗ 1.010 0.978 0.959
h = 3 0.250 1.194∗∗∗ 1.137∗∗ 1.018 0.940 0.935
h = 4 0.303 1.183∗∗∗ 1.151∗ 1.036 0.908 0.903
h = 5 0.333 1.184∗∗∗ 1.171∗ 1.024 0.913 0.881
h = 6 0.349 1.186∗∗∗ 1.225∗∗ 1.045 0.919 0.863
h = 7 0.356 1.184∗∗∗ 1.291∗∗ 1.071 0.926 0.848
h = 8 0.368 1.168∗∗ 1.331∗∗∗ 1.098 0.919 0.836

Portugal
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.046 2.787∗∗∗ 2.130∗∗∗ 0.971 1.922∗∗∗ 1.158∗∗∗

h = 2 0.076 2.214∗∗∗ 1.864∗∗∗ 1.004 1.661∗∗∗ 1.150∗∗

h = 3 0.101 2.006∗∗∗ 1.821∗∗∗ 1.037 1.551∗∗∗ 1.170∗

h = 4 0.124 1.857∗∗∗ 1.821∗∗∗ 1.069 1.482∗∗∗ 1.179
h = 5 0.140 1.739∗∗∗ 1.870∗∗∗ 1.095 1.447∗∗∗ 1.181
h = 6 0.155 1.639∗∗∗ 1.902∗∗∗ 1.118 1.394∗∗∗ 1.175
h = 7 0.170 1.547∗∗∗ 1.923∗∗∗ 1.134 1.323∗∗ 1.158
h = 8 0.184 1.475∗∗∗ 1.923∗∗∗ 1.137 1.247 1.135

Spain
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.063 1.514∗∗∗ 1.248∗∗∗ 0.981 1.171∗∗∗ 1.027
h = 2 0.109 1.358∗∗∗ 1.163∗∗∗ 0.941 1.102 1.036
h = 3 0.148 1.298∗∗∗ 1.147∗∗ 0.932 1.069 1.041
h = 4 0.186 1.251∗∗∗ 1.127 0.923 1.018 1.033
h = 5 0.212 1.234∗∗∗ 1.132 0.909 1.001 1.033
h = 6 0.236 1.208∗∗∗ 1.138 0.901 0.980 1.014
h = 7 0.260 1.180∗∗ 1.137 0.900 0.951 0.985
h = 8 0.280 1.17** 1.142 0.905 0.931 0.974

Sweden
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.124 1.182∗∗∗ 1.067 1.016 1.064 1.070
h = 2 0.209 1.113∗∗∗ 1.065 1.044 1.069 1.041
h = 3 0.275 1.093∗ 1.099 1.071 1.095 1.032
h = 4 0.342 1.083 1.112 1.082 1.047 0.977
h = 5 0.381 1.082 1.125 1.090 1.024 0.947
h = 6 0.399 1.097 1.179∗ 1.131 1.023 0.941
h = 7 0.410 1.120 1.246∗∗ 1.186∗ 1.026 0.936
h = 8 0.420 1.137∗ 1.305∗∗∗ 1.240∗∗∗ 1.033 0.944

Switzerland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.108 1.256∗∗∗ 1.057∗∗ 0.985 1.151∗∗∗ 1.145∗∗∗

h = 2 0.194 1.192∗∗∗ 1.017 0.960 1.149∗ 1.151
h = 3 0.274 1.151∗∗∗ 0.996 0.954 1.133 1.128
h = 4 0.343 1.138∗∗∗ 0.984 0.953 1.103 1.088
h = 5 0.384 1.153∗∗∗ 0.994 0.957 1.096 1.050
h = 6 0.406 1.175∗∗∗ 1.019 0.969 1.115 1.021
h = 7 0.426 1.199∗∗∗ 1.047 0.987 1.144 1.001
h = 8 0.446 1.215∗∗∗ 1.074 1.003 1.179 0.995

United Kingdom
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.063 1.533∗∗∗ 1.195∗∗∗ 0.936 1.238∗∗∗ 1.086∗

h = 2 0.104 1.531∗∗∗ 1.224∗∗ 0.952 1.243∗∗ 1.100
h = 3 0.138 1.517∗∗∗ 1.245∗∗ 0.933 1.241∗∗ 1.130∗

h = 4 0.176 1.436∗∗∗ 1.205 0.903 1.195∗ 1.123
h = 5 0.202 1.406∗∗∗ 1.195 0.883 1.158 1.105
h = 6 0.222 1.382∗∗∗ 1.197 0.878 1.135 1.087
h = 7 0.241 1.368∗∗∗ 1.214 0.898 1.126 1.074
h = 8 0.255 1.361∗∗∗ 1.241 0.940 1.126 1.068

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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C Additional Figures

C.1 Core Inflation, Data and Decompositions

Figure 20: Non-Food & non-Energy inflation rates (year on year growth rates in quarterly CPIs)

Figure 21: MAI-AR-SV estimated common factor (with posterior bands) Vs Data. Core inflation
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Figure 22: MAI-AR-SV, Residuals’ Volatility, posterior bands. Core inflation
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Figure 23: MAI-AR-SV, Residuals’ Volatility, TV decomposition, Common (red), Idio (green),
total (blue). Core inflation
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Figure 24: MAI-AR-SV, Residuals’ Volatility, TV decomposition shares (%), Common (red),
Idio (blue). Core inflation
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Figure 25: MAI-AR-SV, Actual series and Common component (red). Core inflation
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Figure 26: MAI-AR-SV, Actual series and Idiosyncratic component (blue). Core inflation
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