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Abstract

Global developments play an important role for domestic inflation rates. Earlier
literature has found that a substantial amount of the variation in a large set of na-
tional inflation rates can be explained by a single global factor. However, inflation
volatility has been typically neglected, while it is clearly relevant both from a policy
point of view and for structural analysis and forecasting. We study the evolution of
inflation rates in several countries, using a novel model that allows for commonality
in both levels and volatilities, in addition to country-specific components. We find
that inflation stochastic volatility is indeed important, and a substantial fraction of
it can be attributed to a global factor that is also driving inflation levels and their
persistence. While various phenomena may contribute to global inflation dynamics,
it turns out that since the early ’90s the estimated global factor is correlated with
the Chinese PPI and Oil inflation. The extent of commonality among core infla-
tion rates and volatilities is substantially smaller than for overall inflation, which
leaves scope for national monetary policies. Finally, we show that the point and
density forecasting performance of the model is quite good, also relative to standard

benchmarks.

Keywords: Inflation, Volatility, Global factors, Large Datasets, Multivariate
Autoregressive Index models, Reduced Rank Regressions, Forecasting.
J.E.L. Classification: E31, F62, C32, E37, C53.

*We would like to thank Todd Clark, Dimitris Korobilis, Mike McCracken, Barbara Rossi, Norman
Swanson, Herman Van Dijk and participants at a Bundesbank Forecasting Conference, at the 10th ECB
Workshop on Forecasting Techniques and at Bank of Italy Lunch Seminar for useful comments on a
previous version.

ta.carriero@qmul.ac.uk

Hrancesco.corsello@bancaditalia.it

$massimiliano.marcellino@unibocconi.it



1 Introduction

Global developments play an important role in the determination of inflation rates. Papers
such as Borio and Filardo (2007) and Ciccarelli and Mojon (2010) find that a substan-
tial amount of variation in a large set of national inflation rates can be explained by
global factors. Quoting Borio and Filardo (2007): ”...proxies for global economic slack
add considerable explanatory power to traditional benchmark inflation rate equations, even
allowing for the influence of traditional indicators of external influences on domestic in-
flation, such as import and Oil prices. Moreover, the role of such global factors has been
growing over time, especially since the 1990s. And in a number of cases, global factors
appear to have supplanted the role of domestic measures of economic slack.” This evidence
has been recently challenged by Lodge and Mikolajun (2016), whose results suggest that
the relevance of global factors for forecasting domestic inflation is related to their ability
to capture slow-moving trends, like those emphasized by Stock and Watson (2007) in
their decomposition of US inflation into trend and cyclical components. Other empirical
contributions, as Bianchi and Civelli (2015) and Auer et al. (2017), show that financial
openness and Global Value Chains are positively related to the effects of global slack on
inflation. We do not take an a priori stance on this point, but we will use an econometric
model where the relative contribution of global and country-specific factors as drivers of

inflation developments is estimated and can vary over time and across countries.

Another point stressed by Stock and Watson (2007), which however dates back to at
least Engle (1982), is the importance of allowing for conditional time-varying volatility
when modelling inflation. While Engle introduced the ARCH specification as a model for
inflation volatility, Stock and Watson (2007) used stochastic volatility, which is indeed
more common in macroeconomics applications and more flexible since it permits to have
different shocks as drivers of the level and volatility of an economic variable. Stock and
Watson found that the introduction of SV improves the out of sample forecasting power
of their model for US inflation, and it is preferable to both rolling estimation and regime
switching to allow for heteroskedasticity. Besides forecasting, inflation volatility is also
relevant for policy making as, for example, in periods of high volatility it is more difficult

to understand whether inflation movements are temporary or persistent.

Volatility needs to be modeled properly in multi-country studies on inflation determinants.
In particular, it seems interesting to understand whether and to what extent the cross-

country commonality among inflation levels is also present among inflation volatilities.



Furthermore, recent macro-financial literature has considered stochastic volatility as a
basis to construct measures of macro and financial uncertainty (see Jurado et al., 2015,
and Carriero et al., 2017). From this perspective, it may be important for a policymaker

to disentangle whether inflation uncertainty originates locally or globally.

Mumtaz and Surico (2008) investigate co-movements in an unbalanced panel of inflation
rates from the 1970s to early 2000s for 11 countries, using a large dynamic factor model
that incorporates time-varying coefficients and stochastic volatility in the unobservable
factors’ law of motions. Their decomposition does not show a large role for common
components, since most of the time variation in levels and volatilities seems captured
by the country-specific component and the residuals, which are left unexplained. They
conclude that there has been a fall in level, persistence and volatility of inflation across

countries, but with the drop in volatility not synchronized across nations.

Delle Monache et al. (2016) extend the model of Stock and Watson (2007) to a multivariate
inflation setting for the euro area, where the permanent component is common among
inflation rates of EMU members and the cyclical components are modeled as country-
specific autoregressive processes with time-varying parameters. They document that the
common permanent component has driven the general disinflation within the euro area,
and the importance of common shocks to euro area inflation has increased relatively to

idiosyncratic disturbances.

We have collected inflation rates for 20 OECD countries, over the period 1960Q1-2016Q4.
Figure 1 reports the time series of CPI inflation rates for each country. From visual
inspection, there emerges a non-trivial degree of commonality at low-medium frequencies,
as pointed out by Lodge and Mikolajun (2016). A plot of the inflation rates together
with their first principal component (PC), Figure 2, provides more evidence on their
co-movement (the first PC explains about 70% of the variability of all inflation rates).
However, the figure also highlights some country-specific movements in inflation rates, and
changes in the volatility of inflation, which seems overall smaller in the later part of the
sample. To provide descriptive evidence on commonality in inflation volatility, we have
estimated AR-SV models for each inflation rate, and in Figure 3 we report the estimated
volatilities together with their first principal component, which explains almost 60% of

their time variation.

This evidence motivates the choice of decomposing inflation rates into a common compo-

nent driven by a single global inflation factor, a country-specific component, and an error



term featuring, in turn, common and idiosyncratic time-varying volatility.

Hence, we introduce a novel multivariate autoregressive index (MAI) model, with stochas-
tic volatility (SV), and autoregressive (AR) terms. A MAI model is a VAR with a partic-
ular reduced rank structure imposed on the coefficient matrices, such that each variable
is driven by the lags of a limited number of linear combinations of all variables (so called
Indexes), which can be considered as observable common factors. The MAI model was
introduced by Reinsel (1983) and further extended by Carriero et al. (2016b) to allow for a
large number of variables. Stochastic volatility (SV) was introduced in the MAI model by
Carriero et al. (2018), while Cubadda and Guardabascio (2017) allowed for the possibility
of autoregressive (AR) terms to capture idiosyncratic components. We combine all these
features into the MAI-AR-SV model, and develop a novel Bayesian MCMC estimation

algorithm.

The proposed methodological framework is considerably different from Mumtaz and Surico
(2008), who build upon the dynamic factor model of Stock and Watson (1989) and
Forni et al. (2000), and estimate their model’s stochastic volatilities using the univari-
ate method of Jacquier et al. (2004). Our methodology is also substantially different from
Delle Monache et al. (2016), who model multi-country inflation rates with a common per-
manent component and its own changing volatility, estimated in a non-Bayesian setting

in which time variation is driven by likelihood scores.

We work with a single index model where the index (a linear combination of all the na-
tional inflation rates) represents the global factor that drives both levels and volatilities
of all national inflation rates. Inflation levels and volatilities also have an idiosyncratic,
country-specific, component, whose relative importance with respect to the global com-

ponent is time-varying and empirically determined.

We find that the single common factor in the MAI-SV model explains on average about
70% of the variability of all inflation rates. Moreover, there is also substantial common-
ality in the inflation volatilities, increased in the last two decades. The average (across
countries) share of stochastic volatility explained by the global component spans from
20% to 65% throughout the sample. While various sources can be behind the global in-
flation factor, it turns out that since the early '90s it is strongly correlated with Chinese
PPI and Oil inflation.

We also find that the global inflation factor is highly persistent, and this persistence is



transmitted to the global component of the national inflation rates, in line with Ciccarelli
and Mojon (2010). Level components explained by the common factor show a larger

degree of persistence than idiosyncratic components.

We then repeat the same analysis on a panel of non-Food and non-Energy inflation rates
for the same set of OECD countries, using data available for the period 1979Q1-2016Q4,
finding a smaller but non-negligible degree of commonality. The global core inflation
factor explains roughly 25% of the variability of core CPI inflation levels and the average
(across countries) share of stochastic volatility explained by the global component spans
from 10% to 20% throughout the sample, without displaying sizable variation over time
as in the case of headline inflation rates. The remaining substantial national component

of core inflation level and volatility leaves scope for national monetary policies.

The evidence provided in this paper also contributes to the long standing debate on
globalisation, inflation and monetary policy. Rogoff (2003) and Rogoff (2006) discuss how
various structural elements accompanying the globalisation since the early 1990s may have
lowered the global long term equilibrium of inflation rates, fostering the strong global co-
movement of CPI and somehow diminishing the role of domestic slack and monetary
policy in determining national inflation. However, as highlighted also in the recent speech
by Carney (2017), core inflation seems to be less affected by global dynamics, already
when looking at simple pairwise correlation. Our work and methodology allow to mea-
sure separately the degree of cross-country commonality in first and second moments of
both headline and core inflation rates, providing precious information to monetary policy

makers pursuing their inflation mandate in an increasingly global context.

Finally, point and density forecast evaluation shows that the MAI-AR-SV model has very
good out of sample properties for inflation rates, when compared with a set of multivariate
and univariate competitors, and the SV specification is particularly relevant for the proper
calibration of density forecasts. These results hold for both all items inflation and core

inflation rates, and provide further empirical support for our proposed model.

The paper is structured as follows. Section 2 introduces the econometric models and the
volatility decomposition. Section 3 discusses the choice of prior distributions. Section 4
develops the MCMC estimation methodology, with additional details in the Appendix.
Section 5 presents data and empirical results on the commonality in inflation rate levels
and volatilities. Section 6 assesses the point and density forecasting performance of the
MAI-AR-SV inflation model. Section 7 concludes.



2 The econometric model

2.1 The MAI-AR-SV model

We assume that the model for the n-dimensional zero mean process! y; containing the

inflation rates of interest is:

q P
= Ly -y + Ay - By Yi—e + uy, 1
Yt Z e Yt Z Y 0 Yt t (1)
nx1 =1 pxn =1 pxr rXn
where I’y is a diagonal matrix:
. /
'y = Diag(v,), Ye = [’Yu Yo .- ’Yn,e] .

We can rewrite the model more compactly as

S

Ye = Z (LetAe - Bo) Yo+,
=1

or

(_[ - ClL - ...CsLs)yt - C(L)yt = Uy, (2)
where s = max(p,q) and Cp = Ty+Ay- By, £ =1,..., 5.

Moreover, we assume that

uy = G 'Yz, €t “ MN (0, I,), (3)
so that
w~MN[oO 9 |, a=c¢'mx (¢, (4)
—

where G is a triangular matrix containing reduced form covariances?, and (3;),_, is the

! A non-zero mean can be easily allowed by inserting an intercept in the model.
2The matrix G can be also made time-varying, but at the cost of a substantial increase in computational
complexity when the number of variables is large.



history of diagonal matrices containing the stochastic volatilities:
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The specification in (1)-(4) is a Multivariate Autoregressive Index (MAI) model with
stochastic volatility (SV) and autoregressive (AR) terms, MAI-AR-SV. Each of the n
variables in the MAI-AR-SV model is driven by its own lags, capturing in our case country-
specific features of inflation, with associated coefficients 'y, £ = 1, ..., q; by the lags of r
common observable factors (By y;_¢, the "indexes”), capturing in our case global features
of inflation, with associated loading matrices A;,, £ = 1,...,p; and by variable-specific
errors, u;, whose time-varying covariance matrix €); is expressed as in Cogley and Sargent

(2005).

With respect to an unrestricted VAR, the MAI-AR-SV specification leads to a substantial
reduction in the number of parameters influencing the conditional means: we go from n?p
coefficients of the VAR to at most n-q + n-r-p+r-n in the MAI-AR-SV case3. In
our empirical application, we have p = ¢ = 4, r = 1 and n = 20, so that there are 180
parameters in the MAI-AR-SV while there would be 1600 parameters in an unrestricted
VAR.

3 Assuming no restrictions in the matrix By.




2.2 An alternative representation of the MAI-AR-SV model

Let us define the obervable factors driving all variables as
F,=By-Y,, ()
and note that the following decomposition holds:*
I, = W B=; "By + By, 21, Bo 1, (6)

where By, is the (n —r) x n orthogonal matrix of By, such that the scalar product of any
pair of rows of By and By, has zero value®, 2, = ByQ, B} and =, ; = BOLQt_lB(’)L. Let us
also define

Gy = Bor 'y, (7)

where G; are n —r variables that can be interpreted as idiosyncratic components, as there
are many of them and, as we will see later on, they are driven by shocks uncorrelated

with those driving the common factors Fj.

Using (5)-(7), we can now write the MAI-AR-SV model in (1)-(4) as

q p
ye=> T uBE " Bo+ By Z1,Bor  yee + > Ace By yee + s,

=1 =1
or
q max(p,q)
ye=> TuB ET Gt Y (TeuBiE" + A)Fiy + uy. (8)
/=1 =1

Next, we derive the model for the factors F; implied by the MAI-AR-SV model. Starting

4See Carriero et al. (2016b) and the references therein for details.
5This is equivalent to state
BOBé)L - 07‘><(n—7")'



from (8) and multiplying both sides of it either by By or by By, €, !, we obtain:

q max(p,q)
F, =Y Bol'\By,E14G it Y BoTeuBiE" + A)F iy + w, (9)
/=1 (=1
q max(p,q)
Gy=Y BoQ'TyBy T Gt Y BorQ ' (TUBIE" + A)F o+,
=1 =1
where
B i = 0
o I PR PO VIV [ R e A (10)
Uy BOJ_Qt Uy 0 Sl
since

E(wih,) = E(Byugu, Q7'By, ) = BouQ; 1By, = 0.

Hence, the r observable factors F; and the n — r variables G, jointly evolve as a VAR,

with block uncorrelated errors.

The model in (8)-(9) is similar to a factor augmented VAR (FAVAR) model, as for example
in Bernanke et al. (2005), or Stock and Watson (2002a) who also allow for variable-specific
AR terms. The model in (8)-(9) also features stochastic volatility both in the common (w;)
and in the idiosyncratic (¢;) shocks, which is particularly relevant for modelling inflation,
as we will see. Moreover, in the FAVAR model the factors are unobservable, while they are
observable in the MAI case, which simplifies model estimation and interpretation of the
results. Finally, in general unobserved factors should be modeled with a VARMA rather
than a VAR model, as emphasized by Dufour and Stevanovi¢ (2013), while in our case
we can analytically derive the VAR model followed by the observable factors F; (jointly
with the variables Gy).

2.3 Decomposing the volatilities

We decompose the stochastic volatility of the MAI-AR-SV errors u; into two orthogonal
components, one of them driven by the volatility of the common shocks wy, the other by

that of the idiosyncratic shocks, 1y, orthogonal to w;.



Using again the decomposition in (6), we get:
—_—— _ —1
u = WBYE  w + By, (Boi Q' By ) U,

with =; = BOQtB('). Hence, due to the orthogonality of w; and v, we can then decompose
the total error volatility into the volatility of the common component and that of the

idiosyncratic component:
_ (Ocom idio
Qt - Qt + Qt )

where

com r=—1
Qt - QtBO‘—‘t BOQta

idio 5 —==1

2.4 Decomposing the levels and computing IRF's

It is interesting to decompose the inflation rates in y; into their common and idiosyncratic
components, where the common component is driven by the common shocks w; and the
idiosyncratic component by the idiosyncratic shocks ¢;. The decomposition can be also

used to compute impulse response functions (IRFs) to common shocks.

We cannot directly use the model in (8), as both F; and G are driven by both w; and 1.
If the restricted VAR in (2) is stationary, we can write the associated MA representation

as

y, = C(L) 'uy = B(L)w,

= BIL)QByE, " w, + B(L)By, (Bor ' B) ™ .

N

Common Idiosyncratic

As an alternative, we can use the projection approach, proposed for example by Jorda

(2005) for IRF computation, to obtain a similar decomposition:
yr = Bi(L)w; + Ba(L)ty.

Note that, in both cases, the common and idiosyncratic components are orthogonal at all

leads and lags, due to temporal independence and orthogonality of w; and ;. Therefore,

10



empirically, we can obtain the common component as the fitted value in a regression of
y; on contemporaneous and lagged values of the (estimated) common shocks w; (and the
idiosyncratic component as y; minus the estimated common component), while the IRFs

to common shocks are computed from the elements of By(L).

In our empirical application on inflation, we have a single factor (r = 1), so that w; is a
scalar, which further simplifies the computation of the common component of inflation

rates, and their impulse response functions to global shocks.

The MAI-AR-SV model is estimated by means of Bayesian techniques. The next sec-
tion describes the specification of prior distributions for model parameters, while section
4 presents the MCMC estimation algorithm, with additional details in the Appendix.
Readers not interested in technical details can go directly to the empirical results in

Section 5.

3 Estimation of the MAI-AR-SV model

3.1 Specification of the prior distributions

The prior is constructed in various steps, which generally require the use of a training
sample {=T",...,—1,0}.

3.1.1 Prior on B; for the Metropolis step

Prior knowledge for the unrestricted elements of By is elicited with a Normal distribution.
To define these prior distributions, let us decompose the n variables in r blocks, so to

have as many blocks as factors (7).

/

1/ 2/ N r! r
Yo = \yt/ \yt,./ ’ \yt,_, ) nzan.
~ 1xnq 1xng 1Xn, j=1
nx1
For each j € {1,...,r}, we compute the largest eigenvalue score from the Principal
components analysis, so to obtain a final set of r score series (Sf )i:{{l ;}} Once obtained

11



the scores, we consider the following n — r univariate regression models:
: ; ; jid
Vie{l,...,r},Vke{2,...,n;}, S/ =DByx- yik +Ujpss,  Uigs ~ N (0, O'ik)
To normalize the first element of each By ;, By 1 is set at 1. Defining :

v.] € {1, c. ,7’} s BO,j = [BO,j,Z c. BO,j,n]’] y
-

1><(nj71)

for each §0J, we compute the OLS estimate and its variance.

The prior distribution for By can be then centered at

XN

1 Box 0 Oigpen) - 0 Oieuon

0 Oixn-1 1 By oo 00 Orxne—1)
By =
~~ : : : - U :
XN ~

0 Oix(ni-1) 0 Oixno—1y .- 1 By,

and the respective variances are coming from each separate regression. Prior covariances

among elements are set to zero.

3.1.2 Prior on the loadings A

Defining A = [Al Ap}, the prior on a = vec(A’) is multivariate Normal, centered

on 0, and with diagonal variance V, resembling a Minnesota prior.

52, 0 .. 0] [ro 0 ... 0]
P R P U
Lo 0 Lo 0

(0 ... 0 G, [0 ... 0 T,
S .

F,1
N |0z

Vee{l...p},  Ye=Tp Ra ,

.. 0

0 0 =

L F,r

12



where 7 ; and 6%, are the residual variances of a univariate AR(1) for, respectively, each
variable j and each factor s (computed using the prior mean of By). A, is a tightness

parameter.

3.1.3 Prior for the elements of the residual variance

The prior for the elements of GG is a multivariate Normal distribution centered at zero,
with large diagonal covariance matrix. The prior for oy is a multivariate Normal, cen-

Y2 Yn
Prior distributions for the innovation covariance matrix @), is calibrated as in Primiceri

(2005).

!/
tered at |07, o, .. 0?2 ] , with identity covariance matrix, as in Primiceri (2005).

3.1.4 Prior for the AR coefficients v

The prior distribution of the AR coefficients in 7 is a multivariate Normal distribution. In
the spirit of a Minnesota Prior, we choose an a priori unitary mean for the first lag of each
variable whose dynamics resemble a random walk, and a zero mean for the higher lags.
Regarding the a priori covariance matrix, we assume no correlation across coefficients of
different lags and variables, and we set a prior structure for the variances which resembles

the Minnesota prior, using the tightness and decay parameters.

o 1,1 =4 0 ... 0
Y On 0 2_d :
Y= ’Y'z = .Xl ) Vy:)‘w' ® In
: 0
Y 0,x1 0 ... 0 ¢

3.2 Gibbs Sampler

This subsection describes each step of the Gibbs Sampler (GS) used to simulate from the
joint posterior distribution of both parameters {7, A, By, G, Q,} and unobservable states
(Ut)le of the MAI-AR-SV model. Moreover, the Omori et al. (2007) procedure requires
drawing the indexes of Normal components of the mixture approximating the log x?,
contained in the matrix S. This approach is needed as the joint posterior distribution

cannot be analytically determined. The steps are the following:

13



1. Draw the AR coefficients ~ ‘A, By, G, Q, (O't)z;l,

2. Draw the loadings A ‘7, By, G, Q,, (at)T

t=1"

3. Draw the factor weights By ‘7, A G, Q,, (O't)thl,
4. Draw the off-diagonal elements in G ‘fy, A, By, Q,, (at)thl,

5. Draw the indexes of the mixture in S "y, A, By, G, Q,, (at)thl,

6. Draw a history of volatilities (at)thl |S,7, A, By, G, Qo ,
7. Draw the covariance of volatilities” innovations Q, |7, 4, By, G, (at)thl.

It is important to note® that steps 2 and 3 have y, — & - v as dependent variable in order
to draw A and By, while in step 1 we use y; — A - Z; to draw the AR coefficients” .

Each step of the GS for the MAI-AR-SV is described in detail in section A of the Ap-

pendix.

4 The global component of inflation volatility

4.1 Data

Following the literature on global inflation (e.g. Ciccarelli and Mojon, 2010 and Bo-
rio and Filardo, 2007) we gathered a panel of Consumer Price Indices for a set of 20
OECD countries?, downloaded from the OECD main economic indicators database. The
dataset includes 228 observations at quarterly frequency, covering the period from 1960-
Q1 to 2016-Q4. We then constructed inflation rates as year on year changes of the

indexes!?.

6See the Appendix for further details.

"Z; = (I, @ By) - vec ([yt_l e yt_p]) )

8, = [Diag(y:—1) Diag(yr—2) ... Diag(yi—y)] .

9USA, Australia, Austria, Belgium, Canada, Finland, France, Germany, Greece, Italy, Japan, Luxem-
bourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK

0Ciccarelli and Mojon (2010) use Year on Year changes of CPI inflation rates for the bulk of their
analysis. O’Reilly and Whelan (2005) adopt the same transformation stressing that is cited in the ECB’s
official inflation mandate. Lodge and Mikolajun (2016) point out that using YoY changes in CPI is
preferable since this transformation produces no seasonal pattern by construction.

14



4.2 MAI-SV and MAI-AR-SV

We start with a MAI-SV specification (that is with I, = 0, V/¢), with p = 4 lags and
with a single global factor (r = 1), similar to the preferred specification of Ciccarelli and
Mojon (2010). The resulting model is estimated by a simplified version of the MCMC

algorithm presented in Section 4, see Carriero et al. (2018) for details.

Figure 4 reports the inflation rates for each country along with the posterior bands and
median of the estimated common global inflation factor. The model is clearly able to

capture the substantial co-movement of national inflation rates.

Figure 5 reports the data compared with the in-sample fit of the MAI-SV model for
each country, as well as the percentage share of variance explained. On average (across
countries) the estimated common component explains roughly 73% of the variance, which

is in line with the Principal Component Analysis.

Next, as the residuals of the MAI-SV model are clearly serially correlated at least over
parts of the sample, we estimate a MAI-AR-SV model with p = 4 lags for the common
part, as for the MAI-SV, and ¢ = 4 lags for the country-specific AR components. The
in-sample fit for the various countries is presented in Figure 6. The fit of the MAI-AR-
SV is systematically higher than that of the MAI-SV specification, reaching an average
explained variance of about 94%. In particular, the MAI-AR-SV specification is able to
capture both the low and the high frequency variation of each inflation series, due to the

presence of both common and country-specific autoregressive components.

Notwithstanding the differences mentioned above, the estimated global factor from the
MAI-SV and MAI-AR-SV models are very similar, see Figure 7. They are also very
similar to the first PC of the inflation rates. The latter is used to form the prior on
the By coefficients in the MAI models, but the prior variance is large enough so that
results are data driven rather than dictated by the prior. All such measures of common
components are also comparable, though with some differences, to an OECD measure
of global inflation, also reported in Figure 7. These results are in line with the findings
of Ciccarelli and Mojon (2010), even though their sample stops in 2008. As reported
also by Ferroni and Mojon (2016), our analysis suggests strong commonality in inflation
developments across OECD continues also in the more recent period, and, actually, it has

been particularly high during the last financial crisis!!.

"Using a more recent sample of inflation rates (1993-2014), Ferroni and Mojon (2016) find that the

15



Finally, while there can be many drivers of the global inflation factor, Figure 8 shows that
after the 90’s it is correlated with the Chinese PPI inflation rate and the Oil inflation

rate.

4.3 Levels decomposition and persistence

Using the level decomposition discussed in section 2, we are able to disentangle the ob-
served inflation series of each country into orthogonal components driven, respectively,
by common and idiosyncratic shocks. Moreover, for each country we measure how much

variation is explained by each component.

Figures 9 and 10 report, respectively, the common and idiosyncratic components, com-
pared with the actual series. The common components tend to explain more than 50%
of almost all countries’ inflation rates, and are particularly important in large economies
like the US, UK, Germany and Japan.

Stock and Watson (2007) discuss the persistence of US inflation, using as a measure of
persistence the largest autoregressive root of the levels’ process. Inference about this
measure of persistence is made possible by the Stock (1991) method, which is appropriate
when dealing with series displaying high levels of persistence. Stock and Watson (2007)
do not find strong evidence of persistence changes in US inflation from the 1970s onwards,
reporting the largest AR root of US CPI inflation comprised between 0.85 and 1.05 (as
90% confidence interval). O’Reilly and Whelan (2005) report little evidence of instability
for inflation persistence in the Euro Area since the 1970s; they report rolling confidence
intervals for the largest AR root of Euro Area CPI inflation that are centered around 0.9

across almost the entire sample.

In light of this literature, using the entire sample, we computed the 90% confidence
intervals (CI) for the largest AR roots of all national CPI inflation series, of their common
and idiosyncratic components, and of the global factor. Figure 11 compares the CI for the
largest AR root of the observed series, their components and the global factor, separately
for each country. The picture clearly shows how the common global components tend
to preserve the high persistence of the observed series, while the idiosyncratic country-
specific components display wider confidence intervals centered on slightly smaller values.

The global factor shows a very narrow CI centered on 0.99.

fraction of national inflation rates’ variance that is explained by Global Inflation remains dominant.
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These results are in line with what reported by Ciccarelli and Mojon (2010), who argue
that ”the global component captures the most persistent and possibly nonstationary part
of inflation”. Indeed, using a different methodology, they report smaller persistence for
the so called "national” components; interpreting such results, they consider the global
factor as an attractor and the main driver of persistence coming from the observed data.
However, for this specific exercise they use annualized quarter on quarter inflation rates,
which is a transformation that tends to display a smaller degree of persistence than
the year on year transformation. Performing our analysis using QoQ CPI changes, we
measure a degree of persistence in line with Ciccarelli and Mojon (2010) for both global

and national inflation components.

4.4 Time-varying residual volatility decomposition

Figure 12 reports the posterior bands of the estimated reduced form conditional infla-
tion volatilities of all countries for the MAI-AR-SV. The estimated volatilities display a
relevant degree of commonality. Indeed, the first principal component of the volatilities

explains on average about 50% of their variation.

Principal component analysis is however not so suited in this context, due to the time-
varying covariance matrix of the errors. Hence, to better understand what is driving the
volatilities, we can apply the decomposition discussed in Section 2. Figures 13 and 14
present the decomposition of the estimated volatilities in their common and idiosyncratic
components. More specifically, Figure 13 presents results in absolute terms and Figure
14 in relative terms. It turns out that the contribution of the common component is non
trivial, reaching values above 50% for some countries and time periods, especially during

the last decades, in particular during the Great Recession.

In this multi-country context, it is complex to understand the drivers of the common
inflation volatility component. However, for a single country this can be done. Carriero
et al. (2018), focusing on the US, find that supply shocks are particularly important, with

demand shocks ranked second and monetary/financial shocks third.

Figure 15 shows the posterior bands of the global factor volatility, that is (Et)thl. Global
inflation volatility was moderate during the 1960s, increased dramatically during the 1970s
before the sharp reduction starting in the 1980s associated with the change in monetary

policy to fight inflation occurred in several countries. These results are in line with the
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US inflation volatility estimated by Stock and Watson (2007). Global inflation volatility
has remained very low until mid 2000s, reaching a new spike during the Great Recession,
before turning back to the historically low values of the last 3/4 years. Time variation is

significant and relatively large throughout the entire estimation sample.

In order to understand which global forces may correlate with global CPI inflation volatil-
ity, we estimated two measures of stochastic volatilities from separate univariate AR-SV
models for Oil inflation, measured by the WTI price ($/barrel), and for Chinese PPI
inflation, available only from the early 1990s. A comparison of median volatilities is re-
ported in Figure 16. From visual inspection, a clear co-movement between Oil and global
CPI inflation volatility stands out, showing a correlation around 0.5 from the early 1970s
and almost 0.8 from the early 1990s. Also the Chinese PPI inflation volatility displays a
positive correlation with global CPI uncertainty: the correlation is around 0.7 from the
early 1990s.

4.5 Commonality in core inflations

In light of the correlation (in both levels and volatilities) between the global component
of headline CPI inflation and Oil, it is important to detect how much core components
of the CPIs remain correlated. To this end, the same exercises of this section have been
performed using the non-Food and non-Energy Consumer Prices Indices for the same set
of countries, downloaded from the OECD main economic indicators database. These data

are available only from the late "70s onwards.

Non-Food and non-Energy inflation tends to display a lower degree of commonality, al-
ready from a quick graphical inspection. Performing our decompositions, results collected
in Appendix C indicate a smaller importance of the common component both in volatili-
ties and in levels: the global core inflation factor explains roughly 25% of the variability of
core CPI inflation levels, while the average (across countries) share of stochastic volatility
explained by the global component spans from 10% to 20% throughout the sample. The
fact that core inflation remains mostly a national phenomenon leaves ample scope for

national monetary policies.
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5 Forecasting inflation with the MAI-AR-SV model

To provide further evidence on the usefulness of the MAI-AR-SV as a model for multi-
country inflation, we now evaluate its out of sample properties, also in comparison with

a set of standard competitors.

Using the same inflation series employed in the structural analysis, several models are
recursively estimated on a forecasting window of 101 quarterly vintages (forecasting win-
dow starts from 1990Q1). The associated out of sample forecasts are produced for six

different models and 8 horizons, from 1 to 8 quarters ahead.
The models under evaluation are the following:

e the Multivariate Autoregressive Index model with AR components and Stochastic
Volatility (MAI-AR-SV)
the Multivariate Autoregressive Index model with AR components (MAI-AR)

the univariate Autoregressive model (AR)

e the univariate Autoregressive model with Stochastic Volatility (AR-SV)
the Vector Autoregressive model (VAR)

the Vector Autoregressive model with Stochastic Volatility (VAR-SV)

All models are estimated using Bayesian techniques. AR and VAR priors are constructed
using the standard Litterman (1986) a priori assumption of univariate random walk pro-
cesses. The SV prior in all models is calibrated as in Primiceri (2005). The MAI prior is

specified as shown in section 3.

Diagnostics are then computed both in terms of point forecasting and density forecasting,

following the evaluation framework of Clark and Ravazzolo (2015).

Specifically, to evaluate the accuracy in terms of point forecasting, we compute the fore-
casts posterior medians for all vintages, models, variables and horizons. Then, we compute
the Root Mean Squared Forecast Error (RMSFE) for each model, variable and horizon,
using the variation across vintages. Hence, for each variable j € {1,...,n}, each horizon
h e {l,...,H} and each model m € {1,..., M} we compute:

| T ,
RMSEY), = T+ Z (yj,t+h_%+h) y
t=T+1
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where 37, ., is the median of the posterior distribution (yj : +h) (L. is the length of the
discretized posterior distribution). To test for significance of the squared forecast errors
differences across models, we compute the Diebold and Mariano (1995) t-tests for equality

of the average loss.

To evaluate models in terms of density forecasting, we use two measures of accuracy:
the average log-predictive score and the average Continuous Ranked Probability Score
(CRPS). Even in this case, to test for significantly different performances we employ the
Diebold and Mariano test, following Clark and Ravazzolo (2015).

Log Predictive Scores are obtained via non-parametric kernel smoothing density estima-
tors. Adopting a normal kernel K,/(+) and following an optimal selection strategy of the
bandwith parameter ﬁ, we can compute for each variable, model, horizon and vintage

the empirical density evaluted at the actual observation y; 5, that is:

L. ~m,i
-~ ~ 1 - Yjth = Yjitn
Jm (y', mH) = = Ky | &—227 .
e H-LCZ H

i=1

Then, applying logarithms and computing the average across forecasting vintages yields

the average log score for each variable, model and horizon:

T+T*

logScore; ), 1} Z log fm (y] t+h,7—[>

t=T+1

To compute the average CRPS, following Clark and Ravazzolo (2015), we first compute

the CRPS per each variable, model, horizon and vintage, making use of the actual ob-

Le

servations, the posterior distribution (/y\ﬁfrh)zz . and a random permutation of the latter

oo\ Le
(ﬁi;ﬁ»ﬁl where i’ : {1,..., L.} — {1,..., L.} is randomly drawn without replacement.

Lastly, we simply compute the average across time vintages:

Le

L
- ~m,i 1 ~m,i ~m,i’ (i
CRPSY, ), = I Z G5 n — Yien| — 3 L. Z Yitrn — yj,t+f(z) ’
€ =1 € i=

T+1*

CR Z CRPST: .

t T+1

Figure 17 portrays the relative performance of the competing set of models against the

20



benchmark model MAI-AR-SV, for each country and four selected horizons. Models’
point forecasting performance is reported as ratio between their own Root Mean Squared
Errors and the benchmark’s, so that values larger than one imply that the MAI-AR-SV
produces more accurate point forecasts. The MAI-AR-SV model improves significantly
upon its counterparts on most variables, especially at short horizons, even though in a
smaller number of cases this is reversed. The AR-SV shows competitive point forecasting
performance, especially at longer horizons. The highly parametrized VARs generally
achieve a lower degree of point forecasting accuracy than the benchmark. Tables 1a and

1b in the appendix report detailed results.

Moving to density forecast evaluation, Figure 18 reports the relative average log predic-
tive scores for the chosen set of models and horizons. Alternative models’ performance
is reported in terms of log-scores differences with the benchmark MAI-AR-SV, so that
negative values favor the MAI-AR-SV. The benchmark model clearly improves upon its
competitors: the difference is negative and significant in most cases. Eventually, Figure
19 reports the CRPS reported comparatively as a ratio, where values greater than one in-
dicates a worse density forecasting performance with respect to the MAI-AR-SV. Results
are in line with the log-scores, with the benchmark model improving significantly upon

its competitors'2.

To conclude, MAI-AR-SV is also a good forecasting model for inflation rates. The intro-
duction of SV is particularly relevant to improve density forecasts. This evidence is in line
with findings reported by Clark and Ravazzolo (2015) and D’Agostino et al. (2013). On
the other hand, even though the AR-SV shows already good point and density forecasting
power for inflation rates, the introduction of a MAI component proves to be quite benefi-
cial. Furthermore, notwithstanding the smaller number of coefficients due to the reduced
rank restriction imposed by the MAI structure, the benchmark model attains a higher
degree of forecasting accuracy with respect to the standard unrestricted VAR estimated

using a Minnesota Prior as shrinkage device.

6 Conclusions

Global developments play an important role in the determination of inflation rates, and

indeed earlier literature has found that a substantial amount of the variation in a large

12More detailed forecasting results are reported in Appendix B.
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set of national inflation rates can be explained by a single global factor. This literature
has typically neglected inflation (conditional) volatility, while volatility is clearly relevant

both from a policy point of view and for structural analysis and forecasting.

In this paper we study the evolution of inflation rates in many countries, using a novel
model that allows for commonality in both levels and volatilities, in addition to country-
specific components. We find that allowing for inflation volatility is indeed important,
and a large fraction of it can be attributed to a global factor that is also driving the

inflation levels.

While other sources can be behind this global factor, it turns out that since the early
'90s it is strongly correlated with the Chinese PPI and Oil prices. Moreover, also the
global factor stochastic volatility is highly correlated with that of Chinese PPI and Oil

prices.

Repeating the same analysis on core inflation rates for the same set of OECD countries, the
model finds a smaller but non-negligible degree of commonality. The substantial national
component of core inflation level and volatility leaves ample scope for local monetary

policies.

The MAI-AR-SV shows also very good out of sample properties, achieving comparatively
better forecasting performances when compared with a set of prominent alternative mod-

els, especially in terms of density forecasting.
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Figure 1: Inflation rates (year on year growth rates in quarterly CPIs)
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Figure 11: Largest Autoregressive Root (90% confidence intervals) CPI inflation levels, compo-
nents, and global factor.
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Figure 12: MAI-AR-SV, Residuals’ Volatility, posterior bands
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Figure 15: MAI-AR-SV, Global Factor Volatility, Posterior bands.
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Figure 17: Relative Root Mean Squared Forecast Errors (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-

statistic, see legend below.
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Figure 18: Relative Log Predictive Scores (differences with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-

statistic, see legend below.
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Figure 19: Relative Continuous Rank Probability Scores (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-

statistic, see legend below.
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A Gibbs Sampler for estimation of the MAI-AR-SV

model

A.1 Step 1: draw AR-coefficients v

The AR components included in the MAI-AR-SV are stacked in the following way:

q
ytzzré'ytfé‘i‘A'Zt"’uta

(=1
Mme 0 ... 0
q .
0 .0
Yo = ’.72,6 ) Yot AT+ g,
(=1 0
0 . 0 Yn,l
Yi,t—e 0 e 0 V1,6
q
0 _ 0 V2,0
ytzz Yo, t—¢ . YA Z+u,
— | 0 0
O . 0 yn,t—f 771,@
q
Y = Vico - ve+A-Zy +
=1
N
Y2
Yt = [yt—l Viea ... yt—q] ot A Zy + uy,
Yaq

so that we can eventually write a fully stacked form:

p= X - v + A - Zy +u.

nxng mngx1 nXrp  rpx1
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Given By and A, we can transform the matrix form to have the following linear regression

model with common coefficients and variable specific regressors:

=X v+ A Z, +u,

y—A-Zy =X -y +u,

Yy = Xy + w,
with
Uy "z-’ MN 0, Qt s Uy = G_lzt&ft, Et Z"Z\-C’l MN( 0, -[n ) .
~—
nxn

Considering separate equations to estimate the AR coefficients contained in ~ would
ignore the cross-correlations of the innovations in u;. Considering that within the GS we
draw directly the elements ¢ in the matrix G and the stochastic volatilities o; in ¥, for

efficiency purposes we can compute the following transformation of the equation:
y? = Xt S U,

yP =X v+ G 'Sy,

SOGy =8G X+ 8G G, ey,
D

In
YOGy =8G Xy ey
@? = Xt =Y + Et.
Finally obtaining a multivariate linear regression with homoskedastic residuals and unitary
diagonal covariance matrix:

@fzj\i-vaét, 5t%MN(O, I,).
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The transformed model can be stacked in columns:

{Jf Xl €1
{J% XT ErT

Yo = X - v +. &%, e~MN (0, Ir® 1, ).
nT'x1 nT'xng pgx1 nT'x1

With the stacked version of the model, adopting the Normal conjugate prior for coefficients

’Y:
Y~MN (7, V),

we can eventually draw from the posterior of ~:
I~ MN (7, 5 ),

where

~ o~ ~ ~ -1
F= Ve (®ve ), V= (v Xt

A.2 Step 2: Draw loadings A

The second step of the GS aims at drawing the loadings contained in A. Recalling the

following:
AE[Al Ap}, x; = vec(z3), T = Y1 oo Yiep| s
—
nxp
Boyi—1
Zy = : = (I, ® By) -y = vec(By - x7),
BOyt—p
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the model can be restated as:

Boyi—1
yt—xtw:[Al Ap] S
Boyt—p
yt. = . A , Zt +ut7
nXrp  rpx1
and can be stacked as:
Wl [~ u
| _ |5, |
vl L4r ur

y* = 72 - A +u.

Txn TXrp rpXn

Defining a = vec (A’), and exploiting the Kronecker product’s properties, this form can
be vectorized and transformed in:

vec (y*) =vec(Z - A" - I,) + vec (u),

Y* =(1,®%Z)- _a +U,

nTx1 nxnrp ~ WPX1

where U  has the following distribution:
Tx1
nit X
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and

QD 0 Qo 0
0 ng) : e lev")
. S 5 0
0 0 Qb 0 0 Qi
V. = _
Qml 0 SO 0
0 an 1) 0 an n)
0 : 0
0 0 Qb 0 0 QFY)

T
Z [ @ (e - €})]
t=1

To use an informative prior on a we follow the approach by Gelman et al. (2014). The
strategy incorporates the prior as observations. Considering a multivariate Normal prior

with the following moments:

a~MN(a, V, ),
it is possible to augment the model with nrp observations that express the prior informa-
tion:
Y* I, ® 7 U
a+ ,
a Ly Ua

YQ:ZOCL‘I—UQ, UONMN( OnT+n7"p7 VO)’

VO _ Vu OnT Xnrp

OnranT V;z

A draw for a then comes from the following posterior:
a ~ MN ( '&/, (Zolvoflzo)—l > ’

’d — (Zolvoflzo)—l Zolvoflyo.

47



In order to decrease the computational burden of this step throughout the sampling,
the strategy proposed by Carriero et al. (2016a) is adopted, as generalized in Carriero
et al. (2018): the triangular structure of the error is exploited, and coefficients are drawn

equation by equation.

A.3 Step 3: Draw the factor weights elements in B

Given the restrictions and the nonlinear role of By, a Random walk Metropolis step on
the kernel of the posterior of each element of Bj is implemented, nested into the GS In
order to do this, we first write the likelihood of the model. Given the reduced form VAR
written as:

yt:Xt'7+A'Zt+uta Ut’i“MN(O,Qt),

conditioning on all the elements, using the chain rule, we can write the likelihood kernel

as:

f ((yt)le

T T
_1 1 1o~
VaA’ (Qt);.r:17 BO ) X <H|Qt| 2) eXp{_itz:;@\g'Qtl '?Jt};

t=1
where

Gw=u—A-Z — X .

Now we consider the 7* = n — r scalar unrestricted elements of By, i.e. (bO,j);:y Then,

Vj € {l,...,r"} we can define the set by ;- = (bos),;-

For a given prior f (by ;) on each element by ;, we can write the kernel of the conditional

posterior of by ; as:

Foost (Bl (e 20 A, o) o f ()

A, B, (Qt)f:1> - f (Do) -

We are now ready to design the Metropolis step, separately for each j. Given the last

step By ', a random walk candidate is computed as:
by = béjjl +cj -,

where ¢; is a scaling factor calibrated to have an acceptance rate of approximately 30%-

35% and 7 (0,v;), with v; being the variance of prior f (bo ;). The candidate draw
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is accepted with probability:

Fpost (b;§7j| (ys, Qi—l)tT:l? A, bgjji)

T

oot (W1 (e 957, AL D)

aj =min 1,

When the candidate is accepted, then b ;_ = b} ;, otherwise bj ;_ = b, ! . Repeating this

procedure Vj € {1,...,r*}, we build a draw B} from the distribution of interest.

A.4 Step 4: draw the off-diagonal elements in G
To draw the off-diagonal elements, we restate the reduced form in the following way:

= X - + A - Zy 4oy,
Yt t Y A t t

nxng ngxl ~ "XTP  rpxl
p— Xy — A Zp =G ey,
U= G ey,
G-y = Yey.

Removing ones from the diagonal of G, and bringing off diagonal elements on the right

hand side, produces:
G=1,+G".

This can be combined in the model to obtain:

(‘[n + G*) ?/J\t = Zt )

Y= —G" Yy + Xy &
Exploiting the Kronecker product’s properties, we get:

_ * 7 = — -~ */
I, G* % (I, ®y;) vec(G")

XM pxl nxn?2 n2x1

where vec (G*') has zeros in positions [(: — 1)n + ]]ﬁ%%

obtain exactly the elements below the main diagonal of G gathered in the m-dimensional

By removing the zeros, we
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vector ¢g. Removing the corresponding columns in — (I, ®

W, which has the following form:

Yie 0
0 Yt Yar O
0 0 0 Wit Yor Yse O
0 0 0 0 0 0

We can then rewrite the model as:

Z/J\t = —G*/y\t + Etgt,
U= — (I, @ 7;) vec (G) + L&y,

~

v = Wi g +¢;,

Next, we stack the model as:

U1 Wi €1
Y2 W, £

. - . g+ R )
yr Wr ek

y = W - e*

Y N , g +e,
nTx1 Tnxm mx1

y;) we construct the matrix

ef ~ MN (0,1, 7).

"~ MN( OnT><17 22 )m

where Y is the diagonal matrix containing all the stacked stochastic volatilities vectors in

the main diagonal:

Y = Diag ([a’l o

o) ) .

We can then use a similar approach as the one implemented for a, following Gelman et al.
(2014). Given the prior :

g~ MN (g, Vy),
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we augment the model with r observations that express the prior information:

W
=

Yo =W°+e® & ~MN(0urim, V2,

*

19
g+

)

9

g

22 OnTXm

OanT ‘/g

Ve =

€

A draw for ¢ is finally obtained through the following posterior:
g~ MN (G (weverwe) ™),

/j _ (WO/VEQleo) -1 Wolvaofl}’}o

A.5 Step 5-6: Draw the indexes of the mixture in S and then a

history of volatilities (Jt)thl

An important final step concerns the draw of stochastic volatilities. However, before
drawing the (unobservable) stochastic volatilities is necessary to draw the matrix S con-
taining the indexes of Normal components of the mixture, as suggested by Del Negro and
Primiceri (2015).

To start building the necessary form, recall the model formulation used previously and

transform it as:
y=X v+ A Z+G e,

G(yt—Xt"Y—A'Zt):EtEta

[\

Yt
Ur = Sies.
Having this formulation, we adopt the same procedure as in the MAI-SV Gibbs Sampler
illustrated in the Appendix of Carriero et al. (2018), which implements the Omori et al.

(2007) procedure to approximate the log x? innovations as mixture of Normal compo-

nents.
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A.6 Step 7: Draw a covariance matrix @),

Conditioning on the new (ai),fzo, we can draw the covariance matrix ),. Indeed, recall
that:

log oy =logoy—1 + Vo, Vot YMmN | o, Q,
~—

nxn

But then, having a complete history of the sigmas, given the random walk law of motion,
is equivalent to having a complete histories of innovations v,,. Stacking the v,, across

time, we get:

* J—
Vo _|:VU,1 Voo .. VoTl|>
~—~

nxT

and we can easily compute the innovations sum of squares matrix:

_ * */
Se = v, V.
~ ~ =~
nxn nxT Txn

If the prior on the matrix Q, is a n x n Inverse Wishart with scale matrix @, and degrees

of freedom 7, :

QO’ ~ Iwn (QU) 7_0',0) )

then the posterior is conjugate and given by:

QU‘ (Oz)tT:o ~ IWn (SO' + Qaa T5,0 + T) .

B Forecasting Evaluation Tables

The following tables contain the Root Mean Squares Errors, Predictive Log Scores and

Continous Rank Probability Scores relative to the forecasting evaluation section.
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Table la: Root Mean Squared Forecast Errors (RMSE for

MAI-AR-SV, RMSE ratios in all

others)
USA Australia
MAI- . BVAR- MAI- BVAR-
MAI-A A AR-SV BVA TAL- SV /,
ARSV R R R-SV VAR v RSy | MAFAR AR AR-SV | BVAR i
h=1 0.254 1017 1.024° 1.026 0.972%%0.976 h=1 0.203 0.983°% 1.022° 1.020 LOI5™ | 1.023
h=2] 0417 1.020%% 1.032 1.045° 0.933" | 0.923 h=2] 0309 0.976* 1.0427 1.046 1.035° 1.069
h= 0.525 1.035° 1.061 1.073° 0.933 0.918 h =3 0.401 0.9717 1.060° 1.067 1081 1137
h=4] 0.602 1.0467 1.088 1.105% 0.947 0.922 h=4| 0485 0.974°% 1.065" 1.078 1.091 1.162"
h=5] 0583 1.053° 1.127 11487 0.987 0.952 h=5 0518 0.969°* 1.087* 1.101 1.120° 1.198"
h=6] 0553 1.048% 1.183 1.199% 1.046 1.004 h=06| 0547 0.966" 1.105" 1.119° 1.132° 1.209%
h=T 0.543 1.040* 1.242 1.255" 1.087 1.038 h=1 0.562 0.963"* 1,125 1137 1.134* 1.195"
h=8] 0538 1.023% 1.283 1.296° 1.096 1.054 h=8] 0576 0.961°* 1.149" 1.159° 1.133° 1.169™
Austria Belgium
MAI- MAI- . . BVAR-
RSy | MAFAR AR AR-SV | BVAR RSy | MAFAR AR AR-SV BVAR o
h=1 0.209 1.069° 1.0247 1.001 0.968 h=1 0.200 0.972°% 1.0207 1054 1.010 1.040
h=2] 0343 1.069° 10207 | 0.995 0.9747 h=2] 0331 0.930 1.042° 1.091% 0.932 | 0.973
h=3] 0450 1.047 1.022° 1.014 0.9307 h=": 0.433 0.990 1.045 1078 0.959 | 0.927
h=4| 0535 1.049° 1.027°% 1.029 1.001 h= 0.544 1.012° 1.034% 1.058 0.932 | 0.897
h=5 0575 1.062° 1.056° 1.055 1.033 h=5 05% 1.027°% 1.033° 1.057* 0.925 | 0.801
=6 0595 1.078 1.099° 1.094 1.066 h=6] 0.609 T.037 1.039 1.066" 0.942 | 0.900
h=7 00618 1.0947 11207 1125 1.097 h=7| 00616 1.041™ 1.053 1.078 0.955 | 0.902
h=8| 0637 1107 1.148% 1.143 1117 h=38| 0611 1.041° 1.077 1.103 0.960 | 0.898
Canada Finland
MAI- BVAR- MAI- BVAR-
MAIL-AR AR AR-SV | BVAR AL SV ’
AR-SV SV AR.SY | MAFAR AR AR-SV BVAR o
h=1 0.227 1.000%** 1.040 1.036* 0.975** | 0.988 h=1 0.124 0.991%% 1.041% 1.022 1,098 | 1.147***
h=2 0.363 0.997* 1.047 1.040% 0.950"* | 0.971 h= 0.233 1.006™ 0.991°% 0.963° 10557 | 1.108
h=3 0.456 0.993 1.053 1.043 0.9417% ] 0.964* h=3] 033 1.019% 0.9737 0.931°* 1.013 1.073
h=4 0.530 1.006%* 1.048 1.041 0.936"* | 0.963" h=4] 0436 1.026™ 0,966 0.922° 0.935 1.046
h=5 0.551 1.002°% 1.017 1.011 0.920% | 0.978"% h=5] 0513 1.042°% 0.961° 0.907° 0.990 1.041
h=6 0.560 0.989°% 0.989 0.983 0.921% | 0.992" h=6] 0.567 1.049™ 0.973* 0.908 1.007 1.044
h=T| 0574 0.986" 0.986 0.980 0.920 0.999 h=T] 0.606 1.056"" 0.999 0.925 1.032 1.047
h=28 0.588 0.084% 0.995 0.087 0.925 1.008 h=38 0.634 1.066™* 1.026* 0.944 1.049 1.044
France Germany
MAL VAR- . BVAR-
AL | maran AR ansv | pan | PUE MALAR AR | AR-SV L BVAR | g
h=1] 0.108 1.034% 0,972 | 0.974" L0727 1.078 0.996" |  0.982 0.984 L0266 | 1.035
h=2| 0180 1.080°% 0.964"* 0.956 1.089 1.091 1.003"~ 0.978 0.991 1.063 1.051
h=3] 023 1114 0,991 0.947 1125 1.125 1.022"* 1.018 1.030 1.136 1.104
h=4] 0292 11447 1.0037% 0.955 1113 1.125 1.035%+ 1.042 1.057 1.152 1.124
h=5] 0323 11727 1.016™ 0.946 1.131 1.143 1.040°% 1.063 1.078 1.186 1171
h=6 0.341 1.196* 1.036™ 0.937 1.169 1.173 1.050 1.084 1.102 1.202 1.188
h=7] 0360 12127 1.050™ 0.926 1182 1175 10607 1101 1120 1910 1136
—_Q Q 233 * / - QF* M M . b .
h=8] 0332 1.22 1.059 0.914 1173 1.158 o2 1110 1132 1091 1188
Greece Italy
MAI- BVAR- MAI- BVAR-
AR-SV TAI-AR AR AR-SV BVAR sV ARSV MAI-AR AR AR-SV BVAR P
h=1| 0111 1.0447 O [ 0.996 1.138" ] 1.069"** h=1] 0.065 11357 1.032° 0.960"" LI 11267
h=: 0.193 0.985" 027 | 0.984 L1617 | 1.097 h=2] 0128 10747 1.0247 0.946™ 1146 | 1155
h=": 0.256 0.999°* 1057 0.985 1169 1.082° h=3] 0187 1.057 1.0407 0.9517 11167 1.190
h=4 0297 0.999°% 1087 0.988 1193 1.083"% h=4] 0250 1.057 10237 0.937 1.030 1.190
h=5 0306 1.004° TI50 1.005 1.239% | 1.110™ h=5] 0.296 1,050 1030 0033 061 101
h=06| 0313 1.023 1.230° 1.045 L2777 1151 h=6] 0331 10587 10547 0.939 1.049 1185
h=7 0.312 1.065* 1.359** 1.116 1.320%* 1.190"* h="7 0.363 1.064* 10717 0.940 1.027 1.160
h=38 0.311 1.124%* 1.490** 1.206 1.3367+* 1.205% h=38 0.387 1.066** 1.101* 0.956 0.998 1.137

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

* Kk
b
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and ** correspond respectively to 10%,5% and 1% significance levels




Table 1b: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)
Japan Luxembourg
MAL— | g , BVAR- MAL 3z ar AR AR-sv | Bvar | BVAR-
AR.SY | MAFAR AR AR-SV BVAR sV AR-SV : / v
h=1 0.142 1131 1.092°* 1.018 1143 1.119% h=1 0.194 0.998" 1.013* 1.024 1.020 1.042%
h=2] 0230 180 L1153 0.969° 12187 | 1.123° h = 0.307 1015 1.014" 1.030 1.027 | 1.042
h=3] 0313 1,230 1131 0.927 L2707 | 1131 h=3] 0377 10277 10207 | 1.042 1033 | 1048
h=4] 0400 1.253™ 11507 0.908" 12737 | 1107 h=4] 0448 1033 1.046™ 1.059 1021 | 1.029
h=5] 0461 12807 L1787 0.867 12787 | 1.08% n=5| 0473 L0417 1.066" 1.083 1.027 | 1.033
h=6| 0517 1.312"** 121 0.851" 12627 | 1.063 =06 0474 1038 L1001~ 1118 1.046 1.046
h=T7] 0563 1.3227 1243 0848 1234 ]  1.033 R=7] 0485 1030 1.140% 1.155° 1.069 | 1.062
h=8] 0.602 1330 1268 0,840 12087 | 1.016 R —T T 00 Tl 1TisF 1096 1 1035
Netherlands New Zealand
MAI- ) BVAR- MAL- , BVAR-
AR.SY | MATAR AR AR-SV | BVAR oy AR.SY | MALAR AR AR-SV | BVAR sy
0.156 0.980"" 1.030™" | 1012 L1577 | 1.035™ h=1| 0153 0,962 0.966"" | 0.959 1100 | 1.082°
0.231 0.991°* 1.0327% | 1.007 1231 1.168" =2 0259 0.935" 0,928 | 0873 1140 | 1134
0.283 1,000 1065 | 1.040 1267 | 1.234° h=3] 0354 0.9197 0.925" 0.813 1133 141
0.350 10097 10337 | 1.025 1.200° 1.201 h=4] 0437 0.922°7 0.012° 0.811 T102% | 1120
0.400 10327 10257 | 1.006 1.168 1.186 R=5| 0491 0,921 0.9487 0.782 1064 | 1.085"
0.436 10517 1.033" 1.005 1.130 1.158 =06 0532 0.921°* 0.9647 0.765 1.036" 1.045"
0.480 1068 1.019™ 0.996 1.090 1110 h=7| 0.561 0,031 0.986™ 0.760 1.008 0.998
0.510 10837 1.015" 0.987 1.072 1.075 =8| 0505 0,947 10207 0.763 0.981 0.951
Norway Portugal
MALAR AR arsv | pvar | POF MAE | \arar AR AR-SV BVAR BVAR-
SV AR-SV | A ' SV
1.004** 1.028** 0.999 0.965 0.961 h=1 0.079 15007 1.375° 1.013% 1.361* | 1.085"*
1.090*** 1.086*** 1.012 0.957 0.940" h=2 0.136 13417 1,384 1.0147 12877 [ 1.064°*
L1217 T2 1.014 0.936 | 0.929° h=3] 0182 1261 L4467 1.023° L2787 | 10047
L1347 L1457 1.020 0.917 | 0.905" h=4] 0227 1148 1504 1.035 1276 | 1112
1.162%** 1171+ 1.001 0.938 0.903 5 1.080*** 1.580%* 1.048 1.267 1.099***
0.601 1.165"* 1.014 0.959 0.901 1.0327 1637 1.058 1.220™]  1.076™
0.614 LI57 1.282 1.036 0.973 | 0.898 0.995 1.690" 1.079 1.154=] 1.050*
0.630 L1407 1327 | 1.063 0.072 | 0.880 0.998 1.729 1.093 1.094 1.032
Spain Sweden
MAL ; BVAR- MAL |y ir AR AR Ar-sv | Bvar | BVAE-
AR.sy | MALAR AR AR-SV BVAR sy AR-SV { v
h=1] 0116 0.082° 1012 0.981° 1.065" | 0.980 h= 0.235 10247 103’ |  1.033 1.047 | 1.093°
h=2] 0201 0,983 0.987" | 0.936" 10287 | 0.999 R=2] 0333 10447 1.053 1.052 1.056 | 1.070
h=3] 0277 0.9917 oo™ | 0.9227 1.006 1.011 R=3] 0499 1050 1.080" 1.077 1075 | 1.055
h= 0.341 LOI7™ L0137 | 0.911° 0.979 1.012 h=4] 0609 1059 1.108" 1.093 1031 | 0.992
h=5] 03% 1.026™ 1027 0.804° 0.968 1.018 h=: 0.668 1.069" 1.126" 1.105 1014 | 0.966
h=6] 0421 1.026™ 1048 | 0.882" 0.955 1.002 h=6] 0098 1031 11707 |  1.133 1012 | 0956
h=7 0.457 1.028* 1.063* 0.875* 0.934 0.977 h=17 0.721 1.097** 1.215%* 1.172 1.007 0.942
h=8| 0488 10337 LOSI™ ) 0.874 0.916 0.968 h=8| 0.740 L.109" L2577 1.206 L.01 0.938
Switzerland United Kingdom
MAI- i BVAR- MAIL- | B BVAR-
ARy | MAFAR AR AR-SV BVAR Sy ARy | MAFAR AR AR-SV BVAR ov
1085 Lo 0.988° L1557 | L1166 h=1] 0114 1008 0,085 1200 | 1112
1081 0.988" 0.956"" 1.143° 1157 h=2| 0184 1044 1,003 1245 | 1.138
1,083 0.976 0.941° 1125 1128 h=3] 0245 1057 0.980" 1.237 1154
1097 0.974 0.937" L1101 1.093 h=1] 0316 1035 0939 1173 1132
L1 0.985 0.941° 1114 1.071 h=5| 035 1043 0.921" 1122 1.104
11527 1.012 0.952° 1137 1.052 h=06] 039 1,056 0911 1.088 1.080
1179 1.041 0.968 1,166 1.037 h=7] 0433 1074 10737 0.918" 1.063 1,054
1198 1.067 0.982 1,199 1.030 h=8| 0459 1072 1107 0.947" 1.047 1.035
Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

**¥* and ** correspond respectively to 10%,5% and 1% significance levels



Table 2a: Average

Log Predictive Scores (scores for MAI-AR-SV, score differences in

all others)

USA Australia
MAI- i BVAR- MAI- ’ g - BVAR-
ARSy | MAFAR AR AR-SV BVAR sy AR-SV MAFAR AR AR-SV | BVAR SV
h=1] 0.166 —0.2927F | —1.263 —0.032 —1.506 | —0.022 h=1 0.206 —0.334" [ —0.139" | —0.044 | —0.069 0.025
h=2] —0.343 —0.277% [ —1.161 —0.063" | —0.971 | —0.016 h=2] —0.291 —0.197" | —0.052 —0.050 0.012 | —0.024
h=3] —0.600 —0.2677 | —0.532 —0.094" | —0.410 | —0.044 h=3] —0.552 —0.163* —0.053 —0.083 | —0.013 | —0.080
h=4] —0.805 —0.241% ] 20.229 —0.130" | —0.110 | —0.048 h=4] —0.722 —0.169 —0.075 —0.104 | —0.026 | —0.112
h=5| —0.842 —0.276" | —0.180" —0.154" | —0.053 | —0.056 h=5] —0.770 —0.215* —0.136 —0.139 | —0.067 | —0.139*
h=6] —0.867 —0.308" | —0.162° | —0.180"* | —0.052 | —0.073 h=6] —0.809 Z0.238% | —0.183" | —0.164* | —0.091 | —0.150°
h=T7| —0.892 —0.337* | —0.180** —0.208*** | —0.067 | —0.086 h=7| —0.833 —0.260"* —0.216" | —0.182 | —0.105 | —=0.134*
h=8| —0.927 —0.343" | —0.182" |  —0.223""| —0.064 | —0.087 h=8| —0.871 —0.256% —0.233" ] —0.204*| —0.105 | —0.114
Austria Belgium
MAI- , B . BVAR- MAI- , B BVAR-
AR.gy | MAFAR AR AR-SV BVAR SV RSy | MAFAR AR AR-SV BVAR o
h=1] 0126 —0.516" | —0.265 0.004 | —0.146" | 0.052 =1 0.239 —0.283"* | —0.110" —0.040 —0.074 | —0.058
h=2] —0377 —0.386" | —0.172° —0.007 | —0.044 | 0.102 h=2] —0.191 —0.307 | —0.189" |  —0.101"" | —0.151* | —0.535
h=3] —0.696 —0.241% —0.078 0.022 0.047 | 0.143 h=3] —0453 —0.283" —0.247 —0.111° | —0.376" | —0.650
h=4] —0.863 —0.195 —0.064 —0.040 0.045 | 0.088 h=4 —0.723 —0.226° —0.191° —0.106 —0.232 | —0.694
h=5] —0.919 —0.213" —0.102 —0.081 0.002 | 0.045 h=5 —0.822 —0.2407 —0.151" —0.125* | —0.051 0.050
h=6] —0.957 —0.227 —0.132 —0.128 | —0.023 | 0.021 h=6] —0.863 —0.267 —0.154" —0.152" | —0.033 | 0.060
h=T7| —1.016 —0.212° —0.131 —0.170° | —0.032 | 0.000 h=T7] 0912 —0.270"* | —0.140" —0.172" [ 0.007 | 0.077
h=28] —1.059 —0.206 —0.129 —0.2047 | —0.039 | —0.014 h=8| —0.942 —0.273% | —0.141" —0.195" | 0.046 | 0.096
Canada Finland
MAI- BVAR-
AR.gy | MAFAR | AR | AR-SV | BVAR |~ oy /{LéAél MALAR AR AR-SV | BVAR B gf‘q
h=1 0.075 —0.119" | —0.064 —0.086"" | —0.032 | —0.003 h=1| 0651 —0.5507 | 02717 | —0.022 —0.1997 | —0.108"
h=2| —0.352 —0.130" | —0.127 —0.109" | —0.147 | —0.004 h= 0.055 —(0.478% —0.204* [ —0.049 —0.111 —0.114
h=3] —0.556 —0.160" | —0.127 —0.137° | —0.070 | —0.020 h=3| —0.301 —0.402% | —0.156" 0.014 —0.045 | —0.091
h=4] —0.705 —0.173" | —0.126 —0.122 —0.066 | —0.005 h=4] —0.581 —0.307 —0.093 —0.018 0.020 | —0.042
h=5| —0.758 —0.193* | —0.096 —0.109 0.030 0.019 h=5| —0.759 —0.259% —0.056 0.018 0.048 —0.010
h=6| —0.789 —0.211% | —0.086 ~0.104 0.063 0.036 h=6| —0.850 —0.249" —0.068 —0.007 0.040 —0.004
W=7 —05% 0007 | —0.095 —0.194 0.069 0.047 h=7] —0.924 —0.235° —0.074 —0.031 0.032 0.014
=3 —0s® 0937 | —0.105 01497 0.067 0,031 h=8| —0.978 —0.232 —0.082 —0.056 0.020 0.022
France Germany
MAI- , . BVAR- MAL- | BVAR-
ARy | MAFAR AR AR-SV | BVAR SV AR.SV MAI-AR AR AR-SV BVAR SV
h=1 0.806 —0.4207F ] 01537 0.028 | —0.119% | —0.072" h=1] —0.072 —0.178"* | —0.035 —0.014 —0.062 | —0.052
h=2] 0.340 —0.519% | —0.190"" | —0.003 | —0.149" | —0.088 h=2] —0.504 —0.172% | —0.023 —0.037 —0.073 | —0.055
h=3] 0078 —0.550" [ 0219 —0.032 | —0.172 | —0.129 h=3] —0.706 —0.188 | —0.054 —0.081 —0.127 | =0.099
h=4] —0.163 —0.488"F | 0.182° | —0.040 | —0.142 | —0.124 h=4] —0.904 —0.162° | —0.047 —0.103% | =0.092 | —0.105
h=5] —0.263 —0.502F | —0.207" | —0.043 | —0.175 | —0.136 =5 —0.994 —0.165° | —0.039 —0.127°% | —0.079 | —0.092
h=6] —0.333 —0.514" [ —0.223" | —0.046 | —0.206* | —0.163" =06 —1.068 —0.162° | —0.042 —0.139"*| —0.071 | —0.091
h=7] —0410 —0.5037F [ —0.221% | —0.043 | —0.211° | —0.167" h=7] —1.140 —0.151* | —0.036 —0.153"** | —0.064 | —0.073
h=8] —0479 —0.498" ] —0.216" | —0.039 | —0.211" | —0.171" h=8] —1.194 —0.141* | —0.031 —0.155"* | —0.059 | —0.067
Greece Italy
A/;fs[ | MALAR AR AR-SV | BVAR b Lsf/H A}Z 1 g’ . |Marar AR ArRSv | pvar | B }g’/“/ f-
=1 0839 —0.7617F | 04287 —0.002 —0.369"* | —0.104" h= 1.262 —0.956 | —0.616™" 0101 | —0.4317" | —0.146"
h= 0.314 07527 | —0.4147 | —0.003 —0.339"* | —0.109" h= 0.638 —0.8437 | —0.52 0.063 —0.2837 | —0.142°
h=3] 0035 —0.777 | 04237 | —0.022 —0.340" | —0.122° h=3] 0.254 —0.451 0.043 —0.179 | —0.139°
h=4 —0.139 —0.768 | 04247 | —0.039 —0.3427F | —0.131" h=4] —0.026 —0.375" 0.039 —0.117 | —0.125
h=5 —0.216 —0.793% | 04587 | —0.047 —0.372% | —0.145" =5 —0.190 0.030 —0101 | —0.127
h=06] —0.269 —0.806" | —0.491"" | —0.056 —0.391 | —0.170 h=6] —0.298 0.029 —0.128 | —0.131
h=7] —0.306 —0.821° | 05277 | —0.067 —0.405" | —0.187"* h=T7] —0.39%4 0.029 —0.128 | —0.126
h=8] —0.350 —0.820°" | —0.545"* | —0.081 —0.399"* | —0.198"* h=8| —0468 0.012 —0.124 | —0.126

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

* ** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 2b: Average Log Predictive Scores (scores for MAI-AR-SV, score differences in

all others)

Japan Luxembourg
MAI- : BVAR- MAI- ) . BVAR-
ARy | MATAR AR AR-SV | BVAR Sy ARSY | MAIAR AR AR-SV | BVAR o1
h=1 0.505 —0.666* —0.356™* 0.000 —0.251"* | —0.094* h=1 0.245 —0.302** —0.094** —0.075 —0.079** | —0.027
h=2 0.033 —0.609*** —0.331%* 0.051 —0.243*** | —0.091 h=2] —0.199 —0.304** —0.120"* —0.072* —0.174 —0.038
h=3| —0.270 —0.553*** —0.306*** 0.093* —0.241* | —0.082 h=3] —0.426 —0.307* —0.130* —0.070 —0.19 —0.055
h=14] —0.537 —0.475" | —0.260" 01287 0201 | —0.040 =4 —0.619 —0.2827 [ —0.127 —0.105 | —0.08 | —0.054
h=5] —0.671 —0A4TA [ —0.274 01517 | —0.214 | —0.037 h=5| —0.687 —0.3127" | —0.149° —0.1017" | —0.042 | —0.060
h=6| —0.788 —0.453*** —0.267"* 0.167 —0.197 —0.016 h=6| —0.718 —0.332%* —0.182** —0.133* —0.038 —0.054
h=7] —0870 0445 q 01727 | —0.190 | —0.007 h=7| —0.766 03327 —0.193""| —0.145"| —0.027 | —0.058
h=8] —0.946 ~0.426™ 0.1817 | —0.167 0.008 =8| —0.803 03337 —0.207"| —0.148"| —0.025 | —0.076
Netherlands New Zealand
MAI- BVAR- MAI- , BVAR-
ARGy | MALAR AR AR-SV | BVAR o RSy | MALAR AR AR-SV | BVAR o
0.388 —0.623* —0.347* 0.020 —0.237* | —0.064 h=1 0.501 —0.511%* —0.227* 0.009 —0.198"* | —0.056*
—0.002 —0.6257 | —0.312"* | —0.006 —0.219" | —0.106" h= 0.008 —05127 [ —0.226"* | —0.008 —0.195" | —0.087°
—0.213 —0.604" | —0.338""| —0.037 —0.211" | —0.130" =3 —0.249 0524 [ —0.264™ | —0.015 —0.214™ [ —0.112°
—0.441 —0.5087 | —0.261" | —0.030 —0.151 | —0.108 h=4| —0.442 —04817 | —0.259" | —0.014 —0.189" | —0.109%
—0.540 —0.500%** —0.255"* —0.032 —0.141 —0.111 h=5] —0.540 —0.465*** —0.275* 0.012 —0.171* —0.083
—0.634 —04797 | —0.232% | —0.022 —0.123 | =0.109 =06 —0.591 —04637 | —0.308" 0.024 —0.186 | —0.079
—0.729 —04517" | —0.197" | —0.016 —0.108 | —0.102 =T —0.645 —04507" | —0.319" 0.037 —0.183 | —0.062
—0.792 —0.4387 | —0.176 —0.006 —0.099 | —0.105 h=8| —0.601 —0436™" | —0.323" 0.041 —0.167 | —0.048
Norway Portugal
MAL BVAR- y )
sy | marar AR ARsV | BvAR | U AL | marar | ar arsv | par | PO
h= 0.040 —0.350"" |  —0.162"*| 0.000 | —0.064 | 0.003 h=1] 0998 “1o8U | 0073 0.000% | —0.848" | —0.194°
h= —0.361 —0.311%** —0.152** —0.019 0.001 0.032 h=2 0.525 —1.049%* —(.818" 0.045 —0.673" | —0.193"*
h=3] —0.624 —0.2657" | —0.144 —0.047 0.068 | 0.058 h= 0.258 Z0.9497 | —0.765"" | —0.010 —0.5817 | —0.210°
h=4] —0.836 —0.210 —0.129 —0.065 0.136 | 0.121 h= 0.051 —0870 —0.044 —0.497" | —0.208"
h=5] —0.910 —0.184 ~0.128 ~0.052 0.152 0.165 h=5| —0.067 —0.803** —0.064 —0.464** [ —0.212*
h=6] —0.984 —0.188 —0.167 —0.070 0.144 [ 0.198* h=6| —0.155 —0.753™* —0.092 —0.429™" | —0.217
h="7] —0.99 —0.204 —0.218 —0.095 0.115 | 0.201* h=T7] —0232 —0.698™* . —0.106 —0.213
=8| —L02 —0.004 0249 | —0.120 0110 | 0201 h=8] —0.304 —0.650" [ —0.738"*] —0.107 —0.202
Spain Sweden
- BVAR- MAL- | BVAR-
MAIL-AR AR AR-SV | BVAR oV AR-gy | MAFAR AR AR-SV BVAR SV
—0.670 0.029 —0.236"" | —0.040 h=1] 0.108 —0.3207" | —0.146"| —0.046 | —0.102 | —0.036
—0.520" 0.071 —0.136 | —0.050 h=2| —0.425 —0.184" —0.092 —0.140 | —0.086 | —0.012
—0.376 0.159 —0.005 0.022 n=3] —0.784 —0.052 —0.025 —0.567 | —0.047 | 0.063
—0.310 0.152 0.052 0.019 h=4] —0.931 —0.044 —0.052 —0.420 | —0.022 | 0.073
~0.361" —0.201 0.089 —0.00 | —0.036 =5 —1081 —0.040 —0.060 —0.095 0.020 | 0.105
—0.3407 —0.205 0.094 0.002 [ —0.033 h=06| —1.093 —0.083 —0.134 —0.157 0.010 | 0.089
—0.328" | —0.212 0.065 0.011 [ —0.020 h=7| —1103 | —012 Z0.208 | —0.209 | —0.006 | 0.071
—0.308** —0.204 0.058 0.027 —0.005 h=28| —1.11I8 —0.145 —0.256" —0.272% | —0.014 0.047
Switzerland United Kingdom
/] /) V,
A]%flsli/ MAI-AR AR AR-SV | BVAR B LS;M Aﬂﬁéi/, MAI-AR AR AR-SV | BVAR B g‘f/ﬁ'
0.199 —0.374%* —0.103** 0.020 —0.135"* | —0.111*** h=1 —0.681* —0.351"* 0.106* —0.284™* | —(.082"**
—0.362 —0.297%** —0.072 0.021 —0.148" | —0.134 h=2 —0.663* —0.356™* 0.108 —0.245"* | —0.074*
—0.715 —0.215 —0.021 0.000 —0.118 | —0.104 h=: —0.6457 | —0.364™* | 0.141 —0.229" | —0.001"
—0.935 —0.179" 0.003 —0.001 —0.094 | —0.078 h= 287 —0.5797 | —0.330"*|  0.176 —0.202" | —0.096
—1.048 —0.183** 0.007 —0.010 —0.076 —0.036 h=5] —0414 —0.553* —0.319** 0.191 —0.187* | —0.101
—1.102 —0.201** —0.019 —0.016 —0.088 —0.009 h=06] —0.500 —0.536™* —0.321** 0.182 —0.188* | —0.110
—1.153 —0.2137 | —0.029 —0.013 —0.102 0.009 h=T| —0.580 0520 | —0.316™ 0.163 —0.189™ | —0.108
~1.197 —0.215" —0.050 —0.027 —0.126 0.007 h=8| —0.636 —05117 | —0.324% | 0.107 —0.204" | —0.121

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

k kk
)

and ** correspond respectively to 10%,5% and 1% significance levels
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Table 3a: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

USA Australia
MAI- o , BVAR- MAL- BVAR-
ARSY | MAFAR AR AR-SV BVAR | 7 Ar.gy | MALAR AR AR-SV | BVAR v
h= 0.123 1.008° 1.028 1.02 0.993 1.000 h=1 0.107 1.191 1.081"" 1.045 1.033 1.004
h=2] 0206 11157 1.060° 1.042% 0.987 | 0.966 h= 0.176 1.086" 1.041 1.040 1.008 1.039
h=3] 0264 11267 1.097% LO71™ 0.998 | 0.970 h=3 0.231 1.051 1.055 1.071 1.043 1.107
h=4] 0315 11267 11097 1.106" 0.993 | 0.966 h= 0.277 1.056 1.063 1.081 1.063 11417
h=5] 0318 1155 11257 1141 1006 | 0.983 h=5 0.293 1.075 1.103 1.117 1.095 1175
h=6 0.316 11727 1.153* 1.185%* 1.028 1.019 h = 0.306 1.090 1.137 1.143 1.107 1.184**
h="17 0.319 1,194 1.195"** 1.227* 1.056 1.055 h=7 0.312 1.107 1.172° 1.165 1.109 1.165"
h=8] 0327 1197~ 1.2187 12407 1.052 | 1.063 =g 0320 1112 1196 1186 1107 1141
Austria Belgium
MALI- | ; BVAR- MAL- BVAR-
ARSy | MAFAR AR AR-SV BVAR SV RSy | MAIAR AR AR-SV BVAR SV
h=1] 0.114 14047 11727 1.006 1.065 | 0.951 h=1] 0.107 11287 1.053% 1.047 1.050 | 1.060
h=2| 0191 1.268%* 1.102° 1.002 1.001 0.918 h=2] 0169 1139 1.099° 1.096° 1.055 | 1.029
h=3] 0248 1.192°% 1.087 1.031 0.998 | 0.929 h=": 0.215 11437 1117 1.103* 1042 | 0.989
h=4| 0301 1.138%* 1.066 1.053 1.001 0.963 h= 0.274 11227 1.087° 1.089° 0.999 | 0.944
h=5] 0327 11427 1.092 1.081 1.027 | 0.987 h=5] 0309 11277 1.083 1.099" 0.975 | 0.921
h=6] 0343 1148 1.124 1.121% 1.052 | 1.008 h=6] 0325 11447 1.095 L1217 0.973 | 0913
h=7] 0.361 1.149% 1.142 1.158% 1.074 | 1.030 h=T7] 0.339 1147 1.101 1135 0.972 | 0910
h=8] 0375 1.153% 1.152 11797 1.088 | 1.043 h=8] 0.346 11507 1117 L1587 0.959 | 0.900
Canada Finland
MAI- BVAR-
AR.gY | MAFAR | AR | AR-SV | BVAR | = AZA;V MALAR AR ARSV | BVAR b ZgR
h=1] 0126 1.044% 1.039 1.049* 0.933 | 0.996 h=1] 0.060 1,368 11557 | 1.014 LT~ 11337
h=2 0.196 1.048* 1.060 1.060 0.969 0.984 - 0.128 1.205%% 1.091* 0.970 1.092 1.129
h=: 0.246 1.053* 1.073 1.073 0.976 0.993 h= 0.184 1.232° 1.052 0.948 1.046 1.107
h= 0.285 1.065 1.060 1.063 0.971 0.990 h=4| 0241 11727 1.027 0.945 1.003 1.068
h=5 0.297 1.081* 1.039 1.044 0.968 1.001 h=5 0.286 1.149* 1.011 0.934 0.987 1.044
h = 0.305 1.087 1.029 1.034 0.945 0.994 h= 0.319 1.138** 1.017 0.942 0.981 1.026
h=7] 03U L0937 | 1034 | 1048 | 0931 | 0.983 h=7] 034 L1207 1.035 0966 0981 | 1009
= 0321 100 1016 1063 002 0.081 h=8| 0365 1.13 1.053 0.986 0.989 0.997
France Germany
MAI- R BVAR- MAI- BVAR-
AR-SV MAI-AR AR AR-SV BVAR SV AR-SV MAI-AR AR AR-SV BVAR SV
h=1 0.059 1.271%* 1.053* 0.966 1.108** 1.090* h=1 0.147 1.072%* 0.989 0.992 1.028 1.053
h=2 0.095 1.382° 1.083° 0.984 1.146 1.120 h=2 0.225 1.079% 0.981 0.995 1.050 1.055
h=3 0.122 1.436*** 1.124% 0.998 1.199 1.180 h=: 0.274 1.093** 1.027 1.042 1.102 1.097
h= 0.156 1.392°% 1.105 1.007 1.172 1.174 h= 0.329 1.089" 1.046 1.070 1.100 1.101
h=5 0.174 1,407 1.121 1.002 1.191 1.185 h=5 0.354 1.100* 1.059 1.096* 1.107 1.116
h=6 0.188 1.421%* 1.137 0.995 1.214 1.201* h=6 0.379 1.099* 1.065 1.114* 1.122 1.124
h=T| 0202 14207 1.140 0.989 1.215 1.193* h=T| 0405 LITFF 1.073 1.128% 1.132 1.12
h=28 0.217 1.416%* 1.144 0.980 1.200 1.175% h=238 0.427 1.098** 1.077 1.134* 1.142 1.115
Greece Italy
MAL- - BVAR- MAI- . BVAR-
AR-SV MAI-AR AR AR-SV BVAR SV AR-SV MAI-AR AR AR-SV BVAR SV
=1 0.059 1507 1.2527% | 1.003 12707 | 1.085" h=1] 0.036 2,026 15097 | 0.948 1370%" | 1.158™
h=2| 0101 1563 1.2507 | 1.000 1267 1.107 h=2] 0.068 1797 1.3887% | 0.959 1.238% 1174
h=3] 0133 1.616° 1.286" | 1.016 1286 | 1.1207 L=3] 0.101 1.6517 13217 | 0.968 1.150 1.193
h=4] 0.158 16157 13007 1.025 13057 | 11247 h=4] 0136 15027 1.243% 0.957 1.089 1182
h=5| 0.167 1667 1.366™ 1.043 L3507 | 11507 h=5| 0163 14427 1.221 0.954 1.074 1178
h=6| 0174 171 14407 1.076 13857 | 1.184° h=6| 0183 1408 1.224 0.960 1.078 1173
h=7 0178 17617 15337 1117 AL | 1.209° h=7] 0201 1.384 1.225 0.964 1.07 1.155
=38 0182 1.800° 1.6097 | 1.164 408" | 1215 h 0.216 13767 1.239 0.933 1.054 1.14

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

* *¥*% and ** correspond respectively to 10%,5% and 1% significance levels
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Table 3b: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

Japan Luxembourg
A[;AS{V MAIL-AR AR AR-SV | BVAR B Zlm f stlv MAI-AR AR AR-SV | BVAR Bg’:,R
h = 0.079 1,558 1.253* 1.021 1.200% 1117 h=1 0.103 1.171% 1.054** 1.031 1.036 1.030
h=2| 0129 1,502 1.236 0.962 12347 | 1.117 h=2] 0.164 1,168 1.051 1.043 1.047 | L.047
h=3] 0177 1456 1.2197 0.911° 2527 1115 L=3] 0201 11917 1.076 1.061 1.060 1.059
=4 022 14237 1.2277 0.839" 1.245 1.083 h=4] 0244 177 1.089 1.087 1.034 1.037
h=5] 0264 1A 1.235 0.851 1.247 1.053 h=5] 0263 1.190°% 1.107 1.106° 1.035 1.036
h=6 0.299 1.406%* 1.244% 0.835* 1.223 1.025 h=6 0.269 1.206*** 1.150** 1.141% 1.038 1.034
h=7] 03% 1397 1.266™" 0.831" 1.199 1.000 L=7] 0280 1.201% 1179 1171 1.053 1.051
h=38] 0353 13847 1.276 0.826™ 1.169 0.935 =8 0239 1 119" 185 1066 1.066
Netherlands New Zealand
MAI- i BVAR- MAI- . . BVAR-
RSy | MAFAR AR AR-SV | BVAR o AR.gy | MAFAR AR AR-SV | BVAR oV
0.087 1483 1.2337 | 1.006 1230 1.096" h=1| 0082 1313 1085 | 0.969 1152 | 1.067
0.130 14345 12247 | 1.017 1.250% | 11517 h=2] 0139 1.276" 1.061 0.933 11707 | 1.114
0.160 1465 1.239% | 1.053 1.271% 1.212° h=3] 0.186 1265 1.080 0.904 1.179° 1.137
0.199 1379 1.1847 1.054 1.208 1.189 h=4] 0229 1.213% 1.081 0.899 1135 1.120
0.224 1.361° 1.163 1.038 1172 1.169 h=5] 0.256 11937 1.093 0.872 1.105 1.089
0.246 1.347 1.152 1.029 1.133 1.147 h=6] 0274 1181% 1118 0.849 1.089 1.061
0.275 1.311% 1.112 1.018 1.09 1.112 h=7 0.289 1.180* 1.144 0.841 1.068 1.020
0.295 13037 1.089 1.005 1.071 1.090 h=8| 0.298 1.187° 1.174 0.844 1.052 0.983
Norway Portugal
/;Lé/lg[‘ MAI-AR AR AR-SV | BVAR B‘:]l/R 41;45]‘/ MAI-AR AR AR-SV | BVAR Bx)R'
0.132 11897 1084 0.996 1.007 | 0.979 h=1] 0.046 2787 21307 | 0.971 19227 | 1158
0.194 1.206°* 1115 1.010 0.978 | 0.959 L=2] 0076 22147 1.864% | 1.004 1661 | 1.150™
0.250 1.194%% 1,137 1.018 0.940 | 0.935 h =3 0.101 2,006 82| 1.037 LE51| 1.170°
0.303 1.183% 1.151% 1.036 0.908 | 0.903 h=4] 0124 1.857% 18217 1.069 L4827 1179
0.333 1184 LI71F 1.024 0.913 | 0.881 h=5 0140 17307 1.8707 | 1.09 14477 1.181
0.349 1.186" 1.225" 1.045 0919 | 0.863 h=6| 0155 1.639° 19027 | 1118 13947 1.175
0.356 1184 1.291% 1071 0.926 | 0848 L=7] 0170 1547 19237 1134 13237 | 1.158
0.368 1.168% 1.331°% 1.098 0.919 0.836 h=8] 0184 1475 1.923™ 1.137 1.247 1.135
Spain Sweden
MAI- o . BVAR- MAI- ) BVAR-
ARGy | MAFAR AR AR-SV | BVAR ov RSy | MAFAR AR AR-8V BVAR sy
h=1] 0.063 15147 1.2487 | 0.981 L7 1.027 h= 0.124 11827 1.067 1.016 1064 | 1.070
h=2] 0109 1.358° 11637 0.941 1.102 1.036 h= 0.209 11137 1.065 1.044 1.069 | 1.041
h=3] 0148 1.208° 11477 0.932 1.069 1.041 =3 0275 1.093° 1.099 1.071 1.095 | 1.032
h=4] 0.186 1251 1.127 0.923 1.018 1.033 h=4 0382 1.083 1112 1.082 Lo47 | 0.977
h=5 0212 1.2347 1132 0.909 1.001 1.033 h=5| 0381 1.082 1125 1.090 1024 | 0.947
h=6| 0236 1.208° 1.138 0.901 0.930 1.014 h= 0.399 1.097 1.179° 1.131 1.023 | 0.941
L=7] 0.260 1180~ 1.137 0.900 0.951 0.985 L=7] 0410 1.120 1.2467 11867 1.026 | 0.936
=38 0280 TI7TH 1.142 0.905 0.931 0.974 L =8| 0420 1137 1.305° 12407 1.033 | 0.944
Switzerland United Kingdom
MAIL- , BVAR- MAI- ; BVAR-
ARSy | MAFAR AR AR-SV | BVAR sy ARy | MAFAR AR AR-SV | BVAR Sy
h=1 0.108 1.256 1.0577| 0.98 LIS 11457 h= 0.063 1533 11957 | 0.936 1233 | 1.086"
h= 0.194 1.192%% 1.017 0.960 1.149° 1.151 h= 0.104 15317 1.224% 0.952 1.243% | 1.100
h=3| 0274 L1517 0.996 0.954 1.133 1128 =3 0138 1517 1.2457 0.933 12417 | 1.1307
h=4] 0343 1.138% 0.984 0.953 1.103 1.088 Lh=4] 0176 14367 1.205 0.903 1.195° 1123
h=5] 034 1,153 0.994 0.957 1.096 1.050 Lh=5] 0202 1.406™ 1.195 0.833 1.158 1.105
h= 0.406 1175 1.019 0.969 1115 1.021 h= 0.222 1.382°%% 1.197 0.878 1.135 1.087
h=7] 0426 1,199 1.047 0.987 1.144 1.001 h=7] 0241 1.368° 1.214 0.898 1.126 1.074
h=28 0.446 1.215%* 1.074 1.003 1.179 0.995 h=38 0.255 1.361%* 1.241 0.940 1.126 1.068

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

* %k and ¥

correspond respectively to 10%,5% and 1% significance levels
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C Additional Figures

C.1 Core Inflation, Data and Decompositions
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Figure 20: Non-Food & non-Energy inflation rates (year on year growth rates in quarterly CPIs)
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Figure 21: MAI-AR-SV estimated common factor (with posterior bands) Vs Data. Core inflation
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