
A Multiple Testing Approach to the Regularisation of
Large Sample Correlation Matrices

Natalia Bailey1 M. Hashem Pesaran2 L. Vanessa Smith3

1Department of Econometrics & Business Statistics, Monash University

2Department of Economics & USC Dornsife INET, University of Southern California, USA, and Trinity
College, Cambridge

3University of York

10th ECB Workshop on Forecasting Techniques

June 18-19 2018

Natalia Bailey, M. Hashem Pesaran, L. Vanessa Smith ( ) BPS (2018)
10th ECB Workshop on Forecasting Techniques June 18-19 2018 1

/ 40



Introduction

Improved estimation of large covariance matrices is a problem that features
prominently in a number of areas of multivariate statistical analysis.

Finance: Portfolio selection and optimisation (Ledoit and Wolf (2003))

Risk management (Fan et al. (2008))

Testing of capital asset pricing models (Sentana (2009); Pesaran and
Yamagata (2012))

Global macro-econometric modelling (Pesaran et al. (2004); Dees et al.
(2007))

Bio-informatics: inferring large-scale gene association networks (Carroll
(2003); Schäfer and Strimmer (2005))

Other fields: meteorology, climate research, spectroscopy, signal
processing and pattern recognition.
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Introduction

Consider the estimation of an N× N dimensional population covariance
matrix, Σ, where Σ � 0 and the number of cross section units, N, is large.

Especially when N is larger than the number of observations (T) in a given
sample, one suitable estimator of Σ appropriately restricts the
off-diagonal elements of its sample estimate denoted by Σ̂.

Three branches of literature that address this problem are:

Regression-based approaches: make use of suitable decompositions of Σ (e.g.
Pourahmadi (1999, 2000), Rothman et al. (2010), Abadir et al. (2014)).

Banding or tapering methods: rely on a natural ordering among variables
(e.g. Bickel and Levina (2004, 2008a), Wu and Pourahmadi (2009)).

Thresholding (e.g. El Karoui (2008), Cai and Liu (2011)) and Shrinkage (e.g.
Ledoit and Wolf (2004, 2012)) techniques: do not make use of any ordering
assumptions.

Natalia Bailey, M. Hashem Pesaran, L. Vanessa Smith ( ) BPS (2018)
10th ECB Workshop on Forecasting Techniques June 18-19 2018 3

/ 40



Regularisation technique: Thresholding

Involves setting off-diagonal elements of the sample covariance matrix
that are in absolute terms below a certain ‘threshold’ value(s), to zero.

The selected non-zero elements of Σ̂ can be:
set at their sample estimates =⇒ Hard thresholding

somewhat adjusted downward =⇒ Soft thresholding

Universal thresholding (El Karoui, 2008; Bickel and Levina, 2008b - BL)
Applies the same thresholding parameter to all off-diagonal elements of the
unconstrained sample covariance matrix.

Adaptive thresholding (Cai and Liu, 2011 - CL)
Allows the threshold value to vary across the different off-diagonal elements
of the matrix.

Main assumption: the underlying covariance matrix is sparse.
Sparseness: loosely defined as the presence of a sufficient number of zeros on
each row of Σ such that it is absolute summable row (column)-wise.
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This paper’s contribution

Proposes a multiple testing (MT) estimator as an alternative thresholding
procedure

It is employed directly to the sample correlation matrix and thus avoids
the scaling problem associated with the use of covariances

It tests the statistical significance of all pair-wise correlations and
determines the thresholding parameter as part of a MT strategy

Derives the rate of convergence of the error in estimation of the
population correlation matrix, R = (ρij), using the MT method under the
spectral and Frobenius norms and its support recovery (TPR,FPR, and
FDR)

Investigates its finite sample properties by use of a Monte Carlo study
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Some preliminaries

Let {xit, i ∈ N, t ∈ T}, N ⊆ N, T ⊆ Z, be a double index process where xit
is defined on a suitable probability space (Ω, F, P) .

The covariance matrix of xt = (x1t, . . . , xNt)
′ is given by

Var (xt) = Σ = E
[
(xt − µ) (xt − µ)

′]
,

where E(xt) = µ = (µ1, µ2, . . . , µN)′, and Σ is an N× N symmetric,
positive definite real matrix with (i, j) element, σij.

We assume that xit is independent over time, t.

We consider the regularisation of the sample correlation matrix R̂ = (ρ̂ij,T),

ρ̂ij,T =
σ̂ij,T√
σ̂ii,Tσ̂jj,T

, (1)

as an estimator of R = (ρij = σij/σ
1/2
ii σ

1/2
jj ), where

σ̂ij,T = T−1
T∑

t=1

(xit − x̄i) (xjt − x̄j) , for i, j = 1, . . . ,N. (2)
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Assumptions
Assumption 1: The population covariance matrix, Σ = (σij), is sparse such
that

mN = max
i≤N

N∑
j=1

I (σij 6= 0) , (3)

is O
(
Nϑ
)

for some 0 ≤ ϑ < 1/2, where I(A) is an indicator function that takes
the value of 1 if A holds and zero otherwise.

Assumption 2: Let yit = (xit − µi)/
√
σii with:

mean µi = E(xit), |µi| < K,
variance σii = Var(xit), 0 < σii < K,
correlation coefficient ρij = σij/

√
σiiσjj, where

∣∣ρij

∣∣ < 1,

E |yit|2s
< K <∞, for some positive integer s ≥ 3.

Also, let ξij,t = (yit, yjt, y2
it, y

2
jt, yityjt)

′ such that for any i 6= j the time series
observations ξij,t, t = 1,2, . . . ,T, are random draws from a common
distribution which is absolutely continuous with non-zero density on subsets of
R5.
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Multiple Testing problem

For a given i and j, then under H0,ij : σij = 0,
√

Tρ̂ij,T is asymptotically
distributed as N(0,1) for T sufficiently large.

To account for the multiple nature of the N(N− 1)/2 pair-wise tests, we
propose using the following critical value function for testing ρij = 0

cp = Φ−1
(

1− p
2f(N)

)
, (4)

where Φ−1 (·) is the inverse of the CDF of a standard normal variate, and
p is the nominal size of the test. For f(N) we consider

f(N) = cδNδ, (5)

for some positive finite constants cδ and δ.
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Multiple Testing (MT) estimator

We derive conditions on δ which ensure consistent support recovery and a
suitable convergence rate of the error in estimation of R = (ρij).

We show that in both respects the choice of δ depends on the nature of
dependence the pairs (yit, yjt), for all i 6= j, and on the relative rate at
which N and T rise.

The degree of dependence is defined by Kv = supij Kv(θij) where θij is a
vector of cumulants of (yit, yjt).

When ρij = 0 for all i and j, i 6= j, this parameter is given by

ϕmax = supij

(
ϕij
)

where ϕij = E
(

y2
ity

2
jt

∣∣ρij = 0
)
> 0.

Under independence, ϕmax = 1.
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Multiple Testing (MT) estimator

The multiple testing (MT) estimator of R, R̃MT =
(
ρ̃ij
)
, is then given by

R̃MT = (ρ̃ij,T) = ρ̂ij,TI
[∣∣ρ̂ij,T

∣∣ > T−1/2cp(N)
]
, (6)

for i = 1,2, . . . ,N− 1, j = i + 1, . . . ,N.

Hence, the MT estimator of Σ is given by

Σ̃MT = D̂
1/2

R̃MTD̂
1/2
,

where D̂ = diag(σ̂11,T, σ̂22,T, . . . , σ̂NN,T).

In principle, the MT procedure can be applied to estimated residuals from
a factor model, following the reasoning of Fan et al. (2011, 2013).
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Theoretical properties of the MT estimator

Proposition 1

Suppose that Assumption 2 holds and ρ̂ij,T is defined by (1). Then, for
θij = (ρij, µij(0,4) + µij(4,0), µij(3,1) + µij(1,3), µij(2,2))′ with

E
(

yr
ity

s
jt

)
= µij(r, s), for all r, s ≥ 0,

ρij,T = E
(
ρ̂ij,T

)
= ρij +

Km(θij)

T
+ O

(
T−2) , (7)

ω2
ij,T = Var

(
ρ̂ij,T

)
=

Kv(θij)

T
+ O

(
T−2) , where (8)

Km(θij) = −1
2
ρij(1−ρ2

ij)+
1
8
ρij

{
3 [κij(4,0) + κij(0,4)]− 4 [κij(3,1) + κij(1,3)]

+2κij(2,2)

}
,

Kv(θij) = (1− ρ2
ij)

2 +
1
4

{
ρ2

ij [κij(4,0) + κij(0,4)]− 4ρij [κij(3,1) + κij(1,3)]

+2(2 + ρ2
ij)κij(2,2)

}
.

Furthermore |Km(θij)| < K, Kv(θij) = limT→∞
[
TVar

(
ρ̂ij,T

)]
, and Kv(θij) < K.
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Remarks

The results for E
(
ρ̂ij,T

)
and Var

(
ρ̂ij,T

)
are established in Gayen (1951)

using a bivariate Edgeworth expansion approach.

These results hold for any law of dependence between xit and xjt.

In the case where ρij = 0,

ϕij := Kv(θij
∣∣ρij = 0 ) = E

(
y2

ity
2
jt

∣∣ρij = 0
)
> 0, (9)

and

ψij := Km(θij
∣∣ρij = 0 ) = −0.5

[
E
(
y3

ityjt
∣∣ρij = 0

)
+ E

(
yity3

jt

∣∣ρij = 0
)]
. (10)

When yit and yjt are independently distributed, then under ρij = 0, we

have ϕij = E
(
y2

it

)
E
(

y2
jt

)
= 1, and ψij = 0.
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Proposition 2

Suppose that Assumptions 1 and 2 hold. Then, the standardised correlation

coefficients, zij,T =
[
ρ̂ij,T − E

(
ρ̂ij,T

)]
/
√

Var
(
ρ̂ij,T

)
, for all i and j (i 6= j) admit

the Edgeworth expansion

Pr (zij,T ≤ x) = Φ(x) +

s−2∑
r=1

T−r/2gr (x)φ(x) + O
[
T−(s−1)/2

]
, (11)

for some positive integer s ≥ 3, where:

E
(
ρ̂ij,T

)
and Var

(
ρ̂ij,T

)
are defined by (7) and (8) of Proposition 1

Φ(x) and φ (x) are the CDF and PDF of the standard Normal (0,1)

gr (x), r = 1,2, . . . , s− 2, are finite polynomials in x ∈ R x of degree 3r− 1
whose coefficients do not depend on x
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Proposition 2

Further, for all finite s ≥ 3, and aT > 0, we have

Pr (zij,T ≤ −aT) ≤ Ke−
1
2 a2

T + O
[
T−

(s−2)
2 a3(s−2)−1

T e−
1
2 a2

T

]
+ O

[
T−(s−1)/2

]
,

(12)
and

Pr (zij,T > aT) ≤ Ke−
1
2 a2

T + O
[
T−

(s−2)
2 a3(s−2)−1

T e−
1
2 a2

T

]
+ O

[
T−(s−1)/2

]
. (13)

Remark

This proposition establishes a bound on the probability of∣∣ρ̂ij,T − ρij

∣∣ > T−1/2cp(N) without requiring sub-Gaussianity, at the expense of
the additional order term, O

[
T−(s−1)/2

]
, that describes the order of the

moments of zij,T.
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Theorem 1
(Convergence under the spectral norm) Consider ρ̂ij,T defined by (1). Suppose
that Assumptions 1 and 2 hold. Let

cp(N) = Φ−1
(

1− p
2f(N)

)
, (14)

where 0 < p < 1. δ and d are the exponents in f(N) = cδNδ, and T = cdNd, with
cδ, cd > 0. Further, suppose that there exists N0 s.t. for all N > N0,

1− p
2f(N)

> 0, (15)

and ρmin > cp(N)/
√

T, where ρmin = minij(
∣∣ρij

∣∣ , ρij 6= 0).Consider values of δ
that satisfy condition

δ >
2Kv

(1− γ)2 , (16)

for some small positive constant γ, where Kv = supij Kv(θij) and Kv(θij) is
defined in Proposition 1. Then for all values of d > 4/ (s− 1),∥∥∥R̃MT − R

∥∥∥ = Op

(
mNcp(N)√

T

)
. (17)
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Remarks

In view of the conditions of Theorem 1, we note that:

The parameter d is required to be sufficiently large such that such that
d > 4/(s− 1) and T−1/2cp(N)→ 0, as N→∞.

This will be met if N−d ln(N)→ 0 as N→∞, which mathematically holds
true since we must also have d > 4/(s− 1).

Condition (15) is met for δ > 0 and N sufficiently large.

When the expansion rate of N is larger than T, it is required that s > 5,
which means that xit must have moments of order 10 or more.
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Remarks

Condition ρmin > cp(N)/
√

T can be written as

ρ2
min >

c2
p(N)

T
=

c2
p(N)

cdNd = c−1
d

[
c2

p(N)

ln(N)

] [
ln(N)

Nd

]
.

This is satisfied for any δ > 0, even if ρmin → 0 with N, so long as the rate at
which ρmin tends to zero is slower than

√
ln(N)/Nd, for some d > 4/(s− 1).

This latter condition still allows N to rise much faster than T.

Under Gaussianity where Kv = supij Kv(θij) = 1, condition (16) becomes
δ > 2

(1−γ)2 . In general,

The spectral norm result requires δ to be set above 2 supij Kv(θij).

This is larger than the value of δ required for the Frobenius norm obtained in
the theorem that follows.
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Theorem 2
(Convergence under the Frobenius norm) Consider ρ̂ij,T defined by (1). Suppose
that conditions of Theorem 1 hold, but (16) is replaced by the weaker
condition on δ

δ > (2− d)ϕmax, (18)

where δ and d are as defined in Theorem 1 and ϕmax = supij

(
ϕij
)

where

ϕij = E
(

y2
ity

2
jt

∣∣ρij = 0
)
> 0. Then, for d > max

(
2+ϑ
s−1 ,

4
s+1

)
we have

E
∥∥∥R̃MT − R

∥∥∥
F

= O

(√
mNN

T

)
, (19)

and ∥∥∥R̃MT − R
∥∥∥

F
= Op

(√
mNN

T

)
, (20)

where mN is defined in Theorem 1, with mN = O(Nϑ), where 0 ≤ ϑ < 1/2.
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Remarks

In view of the conditions of Theorem 2, we note that:

Condition (18) implies that δ should be set at a sufficiently high level,
determined by d (the relative expansion rates of N and T), and ϕmax (the
maximum degree of dependence between yit and yjt when ρij = 0).

The Frobenius norm result holds even if N rises faster than T.

In the case where N and T are of the same order of magnitude (d = 1),
and where yit and yjt are independently distributed when ρij = 0
(ϕmax = 1), then the Frobenius norm results require δ > 1.

Finally, by allowing for ϕmax to differ from unity our analysis applies to
non-Gaussian processes.
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Comparison with thresholding literature

For the spectral norm, the term cp(N) compares to
√

ln(N) obtained in the

literature for the probability order, Op

(
mN

√
ln(N)√
T

)
, since

limN→∞ c2
p(N)/ ln(N) = 2δ, for δ > 0.

For the Frobenius norm, the order of convergence in (19) is a slight
improvement on existing rates in the thresholding literature:

Setting q = 0, convergence rate under the Fronenius norm is only obtained in
BL under the Gaussianity assumption, stated as∥∥∥Σ̃−Σ∥∥∥

F
= Op

(√
mNN log(N)

T

)
.

This arises from the fact that their result is derived by explicitly using their
spectral norm convergence rate.

The moment conditions required for yit in Theorems 1 and 2 depend on d.

The related literature requires the stronger sub-Gaussianity assumption.

Our conditions are comparable to the polynomial-type tail assumption
considered in CL for the spectral norm result
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Comparison with Bonferroni procedure

Application of the Bonferroni procedure to this MT problem is equivalent
to setting f(N) = N(N− 1)/2. Our theoretical results suggest that:

this can be too conservative if ρij = 0 implies that yit and yjt are independent,

but could be appropriate otherwise depending on the relative rate at which N
and T rise.

In our Monte Carlo study, we:

consider observations complying with ϕmax = 1 and ϕmax = 1.5, and
experiment with δ = {1, 2}.
present results where δ is estimated by cross validation over the range
[1− 2.5].

find that the simulation results conform closely to our theoretical findings.
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Support recovery

Consider the following statitics computed using the MT estimator, R̃MT, given
by (6):

1 The true positive rate,

TPR =

∑∑
i 6=j

I(ρ̃ij,T 6= 0, and ρij 6= 0)∑∑
i6=j

I(ρij 6= 0)
, (21)

2 the false positive rate,

FPR =

∑∑
i6=j

I(ρ̃ij,T 6= 0, and ρij = 0)∑∑
i6=j

I(ρij = 0)
, (22)

3 the false discovery rate,

FDR =

∑∑
i 6=j

I(ρ̃ij,T 6= 0, and ρij = 0)∑∑
i6=j

I(ρij 6= 0)
. (23)
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Theorem 3
(Support Recovery) Consider the true positive rate (TPR), the false positive rate
(FPR) and the false discovery rate (FDR) statistics defined by (21), (22) and
(23) respectively. Then for 0 ≤ ϑ < 1/2, as N→∞ we have:

TPRN
a.s.→ 1, for δ > 0, and d > 2/(s− 1)

FPRN
a.s.→ 0, for δ > ϕmax, and d > 2/(s− 1)

FDRN
a.s.→ 0, for δ > (2− ϑ)ϕmax, and d > 2 (2− ϑ) /(s− 1),

where ϕmax = supij E
(

y2
ity

2
jt

∣∣ρij = 0
)
> 0, with yit = (xit − µi)/

√
σii (see

Assumption 2).
Further, as N→∞,

TPRN → 1 and FPRN
.→ 0, in probability for any δ > 0 and d > 2/(s− 1);

and FDRN → 0, in probability if δ > (1− ϑ)ϕmax, and
d > 2 (1− ϑ) /(s− 1).
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Small sample properties

We consider two experiments:

(A) a banded matrix with ordering used in CL (Model 1)

(B) a covariance structure that is based on a pre-specified number of
non-zero off-diagonal elements

The covariances in Monte Carlo Designs A and B are examples of exact
sparse covariance matrices

Results are reported for N = {30,100,200} and T = 100
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Data generating process

We generate the standardised variates, yit,

yt = Put, t = 1, . . . ,T,

where yt = (y1t, y2t, . . . , yNt)
′, ut = (u1t, u2t, . . . , uNt)

′, and P is the Cholesky
factor associated with the choice of the correlation matrix R = PP′.
We consider two alternatives for the errors, uit:

Gaussian case, uit ∼ IIDN(0, 1) for all i and t (benchmark)
Here, under ρij = 0, E

(
y2

ity
2
jt

)
= 1 hence setting δ = 1 is sufficient

Multivariate t-distribution case (v degrees of freedom)

uit =

(
v− 2
χ2

v,t

)1/2

εit, for i = 1, 2, . . . ,N,

where εit ∼ IIDN(0, 1), and χ2
v,t is a chi-squared r.v. with v > 4, distributed

independently of εit for all i and t.
Here v = 8 so that E

(
y6

it

)
exists (Assumption 2). Also, under ρij = 0,

ϕij = E
(
y2

ity
2
jt

)
= (v− 2)/(v− 4), and with v = 8 we have ϕmax = 1.5. Hence,

setting δ = 2 is sufficient (Theorem 2)
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Data generating process

Next, the non-standardised variates xt = (x1t,x2t, . . . ,xNt)
′ are generated as

xt = a + γft + D1/2yt, (24)

where D = diag(σ11, σ22, . . . , σNN), a = (a1, a2, . . . , aN)′ and
γ = (γ1, γ2, . . . , γN)′.

We focus on the baseline case where γ = 0 and a = 0.

We also consider the DGP that draws γi and ai as IIDN (1,1) for
i = 1,2, . . . ,N, and generates ft, the common factor, as a stationary AR(1)
process.

Under both settings we focus on the residuals from an OLS regression of
xt on an intercept and a factor (if needed).
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Monte Carlo Design A

Following Model 1 of Cai and Liu (2011), we consider the banded matrix given
by

Σ = (σij) = diag(A1,A2),

where A1 = A + εIN/2, A = (aij)1≤i,j≤N/2, aij = (1− |i−j|
10 )+ with

ε = max(−λmin(A),0) + 0.01 to ensure that A is positive definite, and
A2 = 4IN/2.

Σ is a two block diagonal matrix

A1 is a banded and sparse covariance matrix

A2 is a diagonal matrix with 4 along the diagonal

P is obtained numerically by applying the Cholesky decomposition to the
correlation matrix, R = D−1/2ΣD−1/2 = PP′

The diagonal elements of D are given by σii = 1 + ε, for i = 1,2, . . . ,N/2
and σii = 4, for i = N/2 + 1, . . . ,N.
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Monte Carlo Design B

Here we explicitly control for the number of non-zero elements of the
population correlation matrix.

First we draw N× 1 vectors b = (b1, b2, . . . , bN)
′ as Uniform (0.7,0.9) for

the first and last Nb (< N) elements of b, where Nb =
[
Nβ
]
, and set the

remaining middle elements of b to zero.

The resulting population correlation matrix R is defined by

R = IN + bb′ − diag
(
bb′
)
.

The degree of sparseness of R is determined by the value of the parameter
β. We are interested in weak cross-sectional dependence, so we focus on
the case where β < 1/2 and set β = 0.25.

We set Σ = D1/2RD1/2 where the diagonal elements of D are given by
σii ∼ IID

(
1/2 + χ2(2)/4

)
, i = 1,2, . . . ,N.

P is then obtained by applying the Cholesky decomposition to R
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Alternative estimators

MT1: thresholding based on the MT approach applied to the sample
correlation matrix (Σ̃MT) using δ = 1 (Σ̃MT1)

MT2: thresholding based on the MT approach applied to the sample
correlation matrix (Σ̃MT) using δ = 2 (Σ̃MT2)

MTδ̂: thresholding based on the MT approach applied to the sample
correlation matrix (Σ̃MT) using cross-validated (CV) δ (Σ̃MTδ̂)

BLĈ: BL thresholding on the sample cov matrix using CV C (Σ̃BL,Ĉ)

CL2: CL thresholding on the sample cov matrix using the theoretical value
of C = 2 (Σ̃CL,2)

CLĈ: CL thresholding on the sample cov matrix using CV C (Σ̃CL,Ĉ)

LWΣ̂: LW shrinkage on the sample covariance matrix (Σ̂LWΣ̂
)
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Evaluation metrics

We compute the spectral and Frobenius norms of the deviations of each of
the regularised covariance matrices from their respective true Σ:∥∥∥Σ−Σ̊

∥∥∥ and
∥∥∥Σ−Σ̊

∥∥∥
F
,

where Σ̊ is set to one of the following {Σ̃MT1 , Σ̃MT2 , Σ̃MTδ̂ , Σ̃BL,Ĉ, Σ̃CL,2,

Σ̃CL,Ĉ, Σ̂LWΣ̂
}, where δ̂, Ĉ is a constant evaluated through cross-validation

We assess the ability of the thresholding estimators to recover the support
of the true covariance matrix via the true positive rate (TPR) and false
positive rate (FPR).

TPR and FPR are not applicable to shrinkage techniques.
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Monte Carlo Simulation Results
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Robustness results of MT to the choice of the p-value
We considered p = {0.01,0.05,0.10}, and δ = {1,2}.

For the average spectral and Frobenius norms (over 2000 replications) we
have:

They are not much affected by the choice of p when setting δ = 1, 2 or δ̂,
given that the effective p-value amounts to 2p/Nδ which is very small.

This is irrespective of whether the observations are drawn from a Gaussian or
a multivariate t distribution.

The results confirm our theoretical finding that:
In the case of Gaussian observations (ϕmax = 1) the scaling factor δ = 1 is
likely to perform better as compared to δ = 2.

The reverse is true if the observations are multivariate t distributed and the
scaling factor δ = 2 is to be preferred.

The average estimates of δ̂ are also indicative that a higher value of δ is
required when observations are multivariate t distributed.

Overall, the simulation results support using a sufficiently high value of δ
(say around 2) or its estimate, δ̂, obtained by cross validation.
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Table: Spectral and Frobenius norm losses for the MT estimator using significance
levels p = {0.01, 0.05, 0.10} and δ = {1, 2, δ̂}

Monte Carlo design A
δ = 1 δ = 2 δ̂

N\p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
uit∼ Gaussian

Spectral norm
30 1.70(0.49) 1.68(0.49) 1.71(0.49) 1.89(0.51) 1.79(0.50) 1.75(0.50) 1.71(0.49) 1.68(0.49) 1.69(0.49)
100 2.61(0.50) 2.51(0.50) 2.50(0.50) 3.11(0.50) 2.91(0.50) 2.84(0.50) 2.62(0.50) 2.52(0.50) 2.51(0.50)
200 3.04(0.48) 2.92(0.49) 2.89(0.49) 3.67(0.47) 3.46(0.47) 3.37(0.47) 3.05(0.48) 2.93(0.49) 2.90(0.49)

Frobenius norm
30 3.17(0.45) 3.14(0.50) 3.20(0.53) 3.49(0.42) 3.32(0.43) 3.26(0.43) 3.19(0.44) 3.13(0.48) 3.16(0.52)
100 6.67(0.45) 6.51(0.51) 6.60(0.55) 7.75(0.40) 7.34(0.41) 7.17(0.42) 6.70(0.45) 6.52(0.50) 6.57(0.54)
200 9.87(0.46) 9.60(0.53) 9.73(0.58) 11.76(0.40) 11.15(0.41) 10.89(0.42) 9.91(0.46) 9.62(0.52) 9.69(0.57)

uit∼ multivariate t− distributed with 8 degrees of freedom
Spectral norm

30 2.26(1.08) 2.42(1.20) 2.55(1.26) 2.29(0.90) 2.24(0.99) 2.24(1.03) 2.23(0.95) 2.32(1.04) 2.39(1.08)
100 3.85(4.84) 4.20(5.28) 4.46(5.48) 3.78(3.78) 3.71(4.12) 3.71(4.27) 3.67(3.81) 3.83(4.11) 3.93(4.21)
200 4.49(3.46) 5.04(4.34) 5.44(4.77) 4.26(1.80) 4.20(2.21) 4.19(2.37) 4.20(2.43) 4.45(2.78) 4.57(2.94)

Frobenius norm
30 4.06(1.14) 4.35(1.32) 4.60(1.40) 4.12(0.90) 4.04(1.00) 4.03(1.06) 4.03(1.00) 4.19(0.13) 4.32(1.19)
100 8.88(5.17) 9.75(5.67) 10.49(5.87) 9.04(4.04) 8.80(4.40) 8.74(4.57) 8.65(4.16) 9.09(4.48) 9.41(4.59)
200 12.96(4.23) 14.50(5.41) 15.81(5.95) 13.25(2.10) 12.85(2.54) 12.71(2.76) 12.57(2.97) 13.25(3.48) 13.73(3.67)

Cross validated values of δ
N\p 0.01 0.05 0.10

uit∼ Gaussian
30 1.08(0.11) 1.10(0.12) 1.12(0.13)

100 1.04(0.06) 1.05(0.07) 1.06(0.08)
200 1.03(0.05) 1.03(0.06) 1.04(0.06)

uit∼ multivariate t-distr. with 8 dof
30 1.13(0.18) 1.19(0.22) 1.25(0.25)

100 1.12(0.18) 1.18(0.22) 1.23(0.25)
200 1.15(0.20) 1.20(0.23) 1.24(0.25)

Notes: The MT approach is implemented using δ = 1, δ = 2, and δ̂, computed using cross-validation. Norm losses and estimates of δ, δ̂, are averages over 2,000 replications.

Simulation standard deviations are given in the parentheses.
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Table: Spectral and Frobenius norm losses for the MT estimator using significance
levels p = {0.01, 0.05, 0.10} and δ = {1, 2, δ̂}

Monte Carlo design B
δ = 1 δ = 2 δ̂

N\p 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
uit∼ Gaussian

Spectral norm
30 0.48(0.16) 0.50(0.16) 0.53(0.16) 0.50(0.20) 0.49(0.18) 0.48(0.17) 0.48(0.17) 0.49(0.16) 0.49(0.16)

100 0.75(0.34) 0.76(0.32) 0.78(0.31) 0.89(0.43) 0.81(0.39) 0.79(0.37) 0.76(0.35) 0.76(0.34) 0.76(0.34)
200 0.71(0.22) 0.74(0.20) 0.77(0.20) 0.85(0.33) 0.78(0.28) 0.75(0.26) 0.72(0.24) 0.72(0.22) 0.72(0.22)

Frobenius norm
30 0.87(0.17) 0.91(0.18) 0.97(0.19) 0.89(0.20) 0.87(0.17) 0.86(0.17) 0.86(0.17) 0.88(0.17) 0.88(0.17)

100 1.56(0.24) 1.66(0.24) 1.77(0.24) 1.67(0.34) 1.60(0.29) 1.58(0.27) 1.56(0.25) 1.58(0.24) 1.58(0.25)
200 2.16(0.18) 2.32(0.20) 2.50(0.21) 2.25(0.24) 2.19(0.21) 2.16(0.20) 2.15(0.18) 2.18(0.19) 2.18(0.20)

uit∼ multivariate t− distributed with 8 degrees of freedom
Spectral norm

30 0.70(0.39) 0.78(0.43) 0.84(0.45) 0.67(0.33) 0.67(0.35) 0.67(0.37) 0.67(0.33) 0.68(0.35) 0.68(0.36)
100 1.16(0.97) 1.32(1.10) 1.42(1.18) 1.15(0.75) 1.11(0.80) 1.10(0.83) 1.10(0.72) 1.10(0.77) 1.11(0.80)
200 1.36(1.73) 1.65(2.05) 1.83(2.20) 1.14(1.03) 1.13(1.21) 1.14(1.28) 1.16(1.06) 1.19(1.20) 1.20(1.27)

Frobenius norm
30 1.23(0.42) 1.40(0.48) 1.53(0.51) 1.15(0.35) 1.16(0.38) 1.17(0.39) 1.17(0.36) 1.19(0.38) 1.20(0.39)

100 2.39(1.12) 2.90(1.31) 3.25(1.40) 2.17(0.77) 2.15(0.86) 2.16(0.90) 2.17(0.76) 2.22(0.85) 2.24(0.89)
200 3.57(2.13) 4.52(2.54) 5.18(2.72) 2.97(1.21) 2.98(1.43) 3.01(1.53) 3.06(1.27) 3.17(1.48) 3.21(1.57)

Cross validated values of δ
N\p 0.01 0.05 0.10

uit∼ Gaussian
30 1.27(0.27) 1.46(0.35) 1.61(0.36)
100 1.25(0.24) 1.43(0.31) 1.56(0.32)
200 1.23(0.22) 1.36(0.26) 1.49(0.27)

uit∼ multivariate t-distr. with 8 dof
30 1.45(0.38) 1.72(0.39) 1.87(0.35)
100 1.59(0.41) 1.76(0.40) 1.85(0.37)
200 1.68(0.44) 1.78(0.41) 1.85(0.39)

Notes: The MT approach is implemented using δ = 1, δ = 2, and δ̂, computed using cross-validation. Norm losses and estimates of δ, δ̂, are averages over 2,000 replications.

Simulation standard deviations are given in the parentheses.
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Norm comparisons of MT, BL, CL and LW estimators

Norm comparisons for Monte Carlo designs A and B consider norm losses
averaged over 100 replications, due to the implementation of the
cross-validation procedure used in MT, BL and CL thresholding.

For the MT estimator we use p = 0.05 and scaling factor using δ = 2 and δ̂

We consider the threshold estimators, the two versions of MT (MT2 and
MTδ̂) and CL (CL2 and CLĈ) estimators, and BL.

MT and CL estimators (both versions) dominate the BL estimator in every
case, without any exceptions and for both designs.

The same is also true if we compare MT and CL estimators to the LW
shrinkage estimator.

The MT estimator (both versions) outperforms the CL estimator, especially
under multivariate t distributed observations.
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Table: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (T = 100) - Monte Carlo design A

N=30 N=100 N=200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius
uit∼ Gaussian

Error matrices (Σ−Σ̊)
MT2 1.85(0.53) 3.38(0.40) 2.83(0.50) 7.29(0.42) 3.45(0.43) 11.17(0.38)
MTδ̂ 1.75(0.55) 3.21(0.49) 2.44(0.50) 6.48(0.50) 2.95(0.45) 9.65(0.48)
BLĈ 5.30(2.16) 7.61(1.23) 8.74(0.06) 16.90(0.10) 8.94(0.04) 24.26(0.13)
CL2 1.87(0.55) 3.39(0.44) 2.99(0.49) 7.57(0.44) 3.79(0.47) 11.88(0.42)
CLĈ 1.82(0.58) 3.33(0.56) 2.54(0.50) 6.82(0.51) 3.02(0.46) 10.22(0.59)

LWΣ̂ 2.99(0.47) 6.49(0.29) 5.20(0.34) 16.70(0.19) 6.28(0.20) 26.84(0.14)
uit∼ multivariate t− distributed with 8 degrees of freedom

Error matrices (Σ−Σ̊)
MT2 2.17(0.72) 4.02(0.88) 3.44(0.98) 8.52(1.17) 4.00(0.83) 12.79(1.66)
MTδ̂ 2.27(0.88) 4.20(1.11) 3.59(1.39) 8.76(1.65) 4.32(1.53) 13.28(2.83)
BLĈ 6.90(0.82) 8.75(0.55) 8.74(0.10) 17.26(0.30) 9.00(0.42) 24.93(1.02)
CL2 2.55(0.93) 4.53(1.00) 4.63(1.11) 10.35(1.48) 5.92(0.81) 16.43(1.74)
CLĈ 2.27(0.76) 4.24(0.94) 3.85(1.51) 9.44(2.33) 5.04(2.04) 15.65(4.71)

LWΣ̂ 3.35(0.51) 7.35(0.50) 5.67(0.46) 18.04(0.45) 6.60(0.43) 28.18(0.53)

Natalia Bailey, M. Hashem Pesaran, L. Vanessa Smith ( ) BPS (2018)
10th ECB Workshop on Forecasting Techniques June 18-19 2018 36

/ 40



Table: Spectral and Frobenius norm losses for different regularised covariance matrix
estimators (T = 100) - Monte Carlo design B

N=30 N=100 N=200
Norms Norms Norms

Spectral Frobenius Spectral Frobenius Spectral Frobenius
uit∼ Gaussian

Error matrices (Σ−Σ̊)
MT2 0.49(0.18) 0.89(0.19) 0.87(0.37) 1.63(0.28) 0.73(0.24) 2.15(0.19)
MTδ̂ 0.48(0.14) 0.89(0.16) 0.79(0.31) 1.57(0.23) 0.67(0.18) 2.15(0.17)
BLĈ 0.91(0.50) 1.35(0.43) 1.40(0.95) 2.25(0.78) 2.53(0.55) 3.49(0.32)
CL2 0.49(0.17) 0.90(0.18) 1.00(0.48) 1.77(0.44) 0.90(0.37) 2.30(0.30)
CLĈ 0.49(0.15) 0.92(0.17) 0.83(0.31) 1.71(0.28) 1.14(0.83) 2.54(0.58)

LWΣ̂ 1.05(0.13) 2.07(0.10) 2.95(0.26) 4.47(0.09) 2.46(0.06) 6.01(0.03)
uit∼ multivariate t− distributed with 8 degrees of freedom

Error matrices (Σ−Σ̊)
MT2 0.64(0.24) 1.12(0.24) 1.05(0.45) 2.13(0.49) 1.29(2.32) 3.15(2.66)
MTδ̂ 0.66(0.25) 1.15(0.26) 1.03(0.42) 2.17(0.53) 1.30(1.90) 3.29(2.22)
BLĈ 1.36(0.40) 1.84(0.35) 2.70(0.94) 3.58(0.74) 2.70(0.29) 4.08(0.67)
CL2 0.71(0.29) 1.21(0.30) 1.69(0.70) 2.73(0.70) 1.62(0.57) 3.31(0.65)
CLĈ 0.80(0.39) 1.33(0.39) 2.03(1.08) 3.07(0.90) 2.19(0.78) 3.72(0.62)

LWΣ̂ 1.13(0.15) 2.25(0.11) 3.14(0.21) 4.68(0.11) 2.52(0.08) 6.18(0.13)
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Support recovery statistics

We report the true positive and false positive rates (TPR and FPR) for the
support recovery of Σ using the MT and thresholding estimators.

In the comparison set we include the MT estimator for the three choices of
the scaling factor, δ = 1, δ = 2 and δ̂, computed at p = 0.05.

Results show that the FPR values of all estimators are very close to zero, so
any comparisons of different estimators must be based on the TPR values.

We find that, TPR values of Σ̃MT1 are closer to unity as compared to the
TPR values obtained for Σ̃MT2 , in line with Theorem 3. This result is
confirmed when using cross-validated δ.

Turning to a comparison with other estimators, we find that the MT and
CL estimators perform substantially better than the BL estimator.

Allowing for t-distributed errors causes the support recovery performance
of BLĈ, CL2 and CLĈ to deteriorate noticeably while MT1 and MT2 remain
remarkably stable.

TPR values are high for design B, since there we explicitly control for the
number of non-zero elements in Σ, and ensure that conditions of
Theorem 3 are met.
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Table: Support recovery statistics for different multiple testing and thresholding
estimators - T = 100

Monte Carlo design A Monte Carlo design B
N MT1 MT2 MTδ̂ BLĈ CL2 CLĈ N MT1 MT2 MTδ̂ BLĈ CL2 CLĈ

uit∼ Gaussian
30 TPR 0.80 0.71 0.79 0.29 0.72 0.78 30 TPR 1.00 0.98 1.00 0.64 0.98 1.00

FPR 0.00 0.00 0.00 0.04 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00
100 TPR 0.69 0.57 0.69 0.00 0.56 0.68 100 TPR 1.00 0.98 1.00 0.80 0.94 0.99

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00
200 TPR 0.66 0.53 0.66 0.00 0.50 0.65 200 TPR 1.00 0.96 0.99 0.11 0.88 0.78

FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00
uit∼ multivariate t−distributed with 8 degrees of freedom

30 TPR 0.80 0.72 0.79 0.03 0.62 0.74 30 TPR 1.00 0.98 0.99 0.26 0.89 0.82
FPR 0.01 0.00 0.00 0.00 0.00 0.00 FPR 0.01 0.00 0.00 0.00 0.00 0.00

100 TPR 0.69 0.58 0.67 0.00 0.43 0.57 100 TPR 1.00 0.97 0.98 0.27 0.70 0.57
FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

200 TPR 0.66 0.53 0.64 0.00 0.35 0.47 200 TPR 0.99 0.93 0.95 0.05 0.57 0.30
FPR 0.00 0.00 0.00 0.00 0.00 0.00 FPR 0.00 0.00 0.00 0.00 0.00 0.00

TPR is the true positive and FPR is the false positive rates defined in Theorem 4. MT estimators are
computed with p = 0.05.
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Conclusion

This paper considers regularisation of large covariance matrices
particularly when the cross-sectional dimension N exceeds the time
dimension T in a given sample.

Proposes a multiple testing (MT) estimator as an alternative thresholding
procedure, the properties of which are governed by:

the maximum degree of dependence of the underlying observations
the relative expansion rates of N and T

The MT estimator has a convergence rate of mNcp(N)T−1/2 under the
spectral norm and (mNN/T)

1/2 under the Frobenius norm (mN is a
function of N):

These rates are comparable to those established in the literature.
These results are valid under both Gaussian and non-Gaussian assumptions.

Small sample results show that:
In terms of spectral and Frobenius norm losses, the MT estimator is
reasonably robust to the choice of p in the threshold criterion.
For support recovery, better results are obtained when p is scaled by
f (N) = Nδ, where δ = 1.
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