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Abstract

We study optimal monetary and fiscal policy in a model with heterogeneous
agents, incomplete markets, and nominal rigidities. We develop numerical tech-
niques to approximate Ramsey plans and apply them to a calibrated economy
to compute optimal responses of nominal interest rates and labor tax rates to
aggregate shocks. Responses differ qualitatively from those in a representa-
tive agent economy and are an order of magnitude larger. Taylor rules poorly
approximate the Ramsey optimal nominal interest rate. Conventional price sta-
bilization motives are swamped by an across person insurance motive that arises
from heterogeneity and incomplete markets.
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1 Introduction

We study monetary and fiscal policy in a New Keynesian economy populated by
agents who face aggregate and idiosyncratic risks. Agents differ in wages, exposures to
aggregate shocks, holdings of financial assets, and abilities to trade assets. Incomplete
financial markets prevent agents from fully insuring risks. Firms are monopolistically
competitive. Price adjustments are costly. We examine how the Ramsey planner’s
choices of nominal interest rates, transfers, and proportional labor tax rates respond
to aggregate shocks.

Analysis of Ramsey policies in settings like ours faces substantial computational
challenges. The aggregate state in a recursive formulation of the Ramsey problem in-
cludes the joint distribution of individual asset holdings and auxiliary promise-keeping
variables that had been chosen by the planner earlier. The law of motion for that
high-dimensional object must be jointly determined with the optimal policies. This
feature renders inapplicable existing numerical techniques that rely on approximating
around a known invariant distribution associated with fixed government policies.

To overcome this challenge, we develop a new computational approach that can
be applied to economies with substantial heterogeneity and does not require knowing
their long-run properties in advance. Our approach builds on a perturbation theory
that uses small-noise expansions with respect to a one-dimensional parameterization
of uncertainty. Each period along a sample path, we apply a perturbation algorithm
evaluated at the current cross-sectional distribution to approximate policy functions.
We use approximate decision rules for the current period to determine outcomes
including the cross-sectional distribution next period. Then we obtain approximations
of next period’s decision rules by perturbing around that new distribution. In this
way we update points around which policy functions are approximated along the
equilibrium path.

Our perturbation approach requires computing derivatives of policy functions
with respect to all state variables. One state variable is a distribution over a multi-
dimensional space of agents’ characteristics. Except for very simple models of hetero-
geneity, it is impractical to compute the derivative with respect to this distribution
(i.e., the Frechet derivative). We make progress by showing that our expansion re-
quires only the value of that derivative at a point that corresponds to the optimal
Ramsey response. We derive an expression for this value and show that it is a linear
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function of variables that are easy to compute. That mathematical structure allows
us to compute approximations to each agent’s policy function by solving low dimen-
sional linear systems of equations that are independent across agents. This feature
enables us to solve our model quickly even though it has ample sources of hetero-
geneity. Furthermore, we proceed to show that the same computationally convenient
linear structure is preserved for second- and higher-order expansions. That allows us
to capture precautionary and hedging motives.

We apply our approach to a textbook New Keynesian sticky price model (see, e.g.,
Galí (2015)) augmented with heterogeneous agents in the spirit of Bewley-Aiyagari.
Agents’ wages are subject to idiosyncratic and aggregate shocks that we calibrate to
match empirical facts about labor earnings documented by Storesletten et al. (2004)
and Guvenen et al. (2014). We make the initial joint distribution of assets and
wages match cross-sectional moments in the Survey of Consumer Finances. We posit
two types of aggregate shocks: a productivity shock and a shock to the elasticity
of substitution between differentiated intermediate goods that affects firms’ optimal
markups. Financial markets are incomplete and agents can trade only non-state-
contingent nominal debt. We study two types of Ramsey policies. First, a “purely
monetary policy” planner is required to keep the labor tax rate fixed, an assumption
commonly used with New Keynesian models. In this case, the planner can adjust only
nominal interest rates and a uniform lump-sum transfer. Second, a more powerful
“monetary-fiscal” Ramsey planner can adjust tax rates in addition to interest rates
and transfers.

Two motives inherited from the Ramsey planner’s objective function shape optimal
policies. One is the usual New Keynesian motive to use government policies to offset
inefficiencies caused by sticky prices. A second is a desire to provide insurance.
Without a complete set of Arrow securities, agents cannot hedge risk, so aggregate
shocks affect different agents differentially. A planner can use monetary and fiscal
tools to even out the impact of those shocks and provide insurance. In our calibrated
economy, we find that the insurance motive quantitatively swamps price stability
considerations. That makes optimal policy responses differ significantly from those in
a representative agent economy where they are primarily driven by the price stability
motive.

Consider first the optimal monetary response to a positive markup shock. One
effect of a markup shock is that firms want to increase their prices. Nominal rigidities
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make that costly. When price stability is its only motive, the planner increases the
nominal interest rate in response to a positive markup shock. That lowers aggregate
demand and marginal costs and thereby reduces firms’ incentives to raise prices. Galí
(2015) dubs this optimal response in representative agent New Keynesian economies
as “leaning against the wind”. With heterogeneous agents, a markup shock redis-
tributes resources among households. Higher markups shift factor income from wages
to dividends, benefiting firm owners and hurting wage recipients. To provide insur-
ance, the planner can decrease interest rates in order to boost aggregate demand and
real wages. The planner does that to offset the negative effect of the markup shock
on wage-earners. The net effect of the markup shock on optimal policy depends on
the relative strengths of the planner’s price stability and insurance motives. When
we calibrate the distribution of equity ownership to U.S. data, we find that a one
standard deviation positive markup shock, which implies a 0.5 percentage point in-
crease in firms’ optimal markups, calls for a 0.3 percentage point decrease in the
nominal interest rate versus a 0.05 percentage point increase with a representative
agent calibration.

Price stability and insurance motives also bring different prescriptions for the
optimal fiscal response. To ensure price stability in response to a positive markup
shock, the planner wants to lower the marginal tax rate one for one with the shock.
This requires lowering transfers to satisfy the government’s budget constraint, making
the average taxes more regressive. To provide insurance, the planner needs to raise
taxes and transfers to increase progressivity and offset the distributionary impact of
the shock. In the calibrated economy, the insurance channel dominates: in response
to a one standard deviation positive markup shock, a planner increases tax rates by
2 percentage points. This fiscal response comes on top of a cut in nominal interest
rates by about 0.25 percentage points and a 1 percentage point spike in inflation.
The tax increase is short-lived, which contrasts with the very persistent effects of
aggregate shocks on optimal tax rates in non-monetary economies, such as Barro
(1979) and Aiyagari et al. (2002). The reason for this is that deadweight losses
from temporary tax changes in New Keynesian models are lower than those from
permanent tax changes: firms choose not to adjust nominal prices to temporary
shocks, and consequently a transitory tax change mostly affects tax incidence but not
the labor wedge.

The insurance motive also substantially affects Ramsey responses to TFP shocks.
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With heterogeneous agents, effects of productivity shocks are not shared equally: bor-
rowers in state-non-contingent nominal debt are hurt more than lenders. This effect
is further amplified when, as in the data, financial and wage income are positively
correlated and because labor incomes of low earners are especially adversely affected
by recessions (see Guvenen et al. (2014)). To even out adverse effects of the shock,
the planner cuts nominal interest rates, thereby generating inflation and lowering
realized returns on debt holdings. This contrasts with a typical New Keynesian re-
sponse that would maintain stable prices by adjusting nominal rates one-for-one with
the “natural” rate of interest.1 In our calibrated economy, we find that in response
to a productivity shock that lowers output by 3 percentage point, nominal rates are
lowered by 0.6 percentage point.

In our heterogeneous agent economy, Taylor rules perform substantially worse
than in a representative agent counterpart. Without heterogeneity, the main purpose
of optimal policy is to stabilize inflation; Taylor rules meet this objective well. But
they do poorly in the presence of heterogeneity for two reasons. First, in response
to markup shocks it is optimal to move interest rates in the opposite direction from
that prescribed by standard Taylor rules. Second, while Taylor rules make nominal
interest rates and inflation as persistent as exogenous shocks, the Ramsey planner
prefers more transient nominal interest rates and inflation to provide insurance.

We also investigate the effects of trading frictions on optimal policy. Typical
Bewley-Aiyagari models poorly match observed cross-section distributions of MPCs.
We alter our economy to include a set of agents who can hold assets and consume
their returns but cannot trade them. We choose the distribution of such agents to
match MPC heterogeneity estimated by Jappelli and Pistaferri (2014). We find that
in such an economy the optimal response of nominal interest rates is smaller than in
our benchmark calibration to markup shocks, but not to productivity shocks. This
outcome emerges because in response to a markup shock the Ramsey planner would
like to alter aggregate demand and real wages. These quantities are determined by
average actions across agents. Changes in interest rates have a direct effect only on
agents who can trade their assets. By reducing the number of such agents, trading
frictions make monetary policy less effective, an outcome emphasized by Auclert
(2017) and Kaplan et al. (2018). But in response to a TFP shock the planner wants

1The natural interest rate is defined as the real interest rates that would prevail in an economy
without nominal rigidities.
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to affect returns on financial assets that are determined by a marginal investor and
do not depend on the number of such investors. We also find that the presence
of trading frictions increases the importance of fiscal instruments like transfers that
directly affect the consumption of high MPC agents.

1.1 Earlier works

A number of contributions characterized and approximated competitive equilibria
with exogenously fixed government policies. These employ one of two broad ap-
proaches that either (i) compute non-linear policies after summarizing the distribu-
tional state variable with a low dimensional vector of its moments, for instance Krusell
and Smith (1998), or (ii) apply a first-order Taylor expansion of policy functions with
respect to the aggregate shocks around an invariant distribution for an economy with-
out aggregate shocks, for instance Reiter (2009).2 Neither approach is suitable for
our problem. First, for us an invariant distribution depends on a key object that we
want to compute, namely, the Ramsey policy. Furthermore, the invariant distribution
under a Ramsey plan for an incomplete markets without aggregate shocks looks very
different from the invariant distribution of the same economy with small aggregate
shocks. In addition, the speed of convergence to this invariant distribution is slow
and the behavior of optimal policies around the invariant distribution differs signifi-
cantly from the behavior of policies away from the invariant distribution.3 Finally, the
state space in an economy under the Ramsey plan is much larger because it includes
promise-keeping variables for the planner in addition to all of states that appear in a
corresponding economy with an arbitrary exogenous government policy.

Our computational approach uses a one dimensional scaling of uncertainty and a
sequence of small-noise expansions along an equilibrium path. Our approach is most
closely related to Fleming (1971), Fleming and Souganidis (1986), and Anderson et al.
(2012). State variables in the models studied by Anderson et al. are low dimensional,
for example just an aggregate capital stock. In contrast, our state variable is a joint

2See Algan et al. (2014) for variants of the Krusell and Smith method and Ahn et al. (2017);
Winberry (2016); Childers et al. (2018) for the variants of the Reiter method.

3Such outcomes are evident in Barro (1979), Aiyagari et al. (2002), and Farhi (2010). In Bhandari
et al. (2017a), we consider a simplified version of the economy studied in this paper and show that
while the invariant distribution in a Ramsey problem without aggregate shocks is pinned down by
initial conditions (such as the initial distribution of wealth), the invariant distribution in a corre-
sponding problem with aggregate shocks is determined by motives to hedge such shocks. Therefore,
the invariant distribution is discontinuous in the degree of aggregate risk around zero risk.
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distribution over a multi-dimensional domain. That renders direct application of the
Anderson et al. technique computationally infeasible. We overcome this problem by
proving and applying a factorization theorem (see section 3) that allows us to break
one big problem into a manageable collection of much smaller ones. We show how
these ideas can be used to construct second- and higher-order approximations. Our
approach builds on Evans (2015).

Most studies of optimal policy have been restricted to economies with very lim-
ited or no heterogeneity. Schmitt-Grohe and Uribe (2004) and Siu (2004) are two
notable quantitative studies of Ramsey policies in representative agent New Keyne-
sian models. Our parameterization follows theirs. So as might be expected, when all
heterogeneity is shut down, we obtain quantitative results similar to theirs. Bilbiie
and Ragot (2017), Nuno and Thomas (2016), Challe (2017), and Debortoli and Gali
(2017) study optimal monetary policy in economies with very limited heterogeneity.
In those settings, the aggregate distribution disappears from the formulation of the
Ramsey problem and the analysis can be done using traditional techniques. Like us,
they emphasize that uninsurable risk creates reasons for a planner to depart from
price stability. A recent paper by Legrand and Ragot (2017) develops a method dif-
ferent from ours to approximate Ramsey allocations in incomplete market economies
with heterogeneity. They apply their method to a neoclassical economy.

2 Environment

Our economy is populated by a continuum of infinitely lived households. Individual
i’s preferences over final consumption good {ci,t}t and hours {ni,t}t are ordered by

E0

∞∑
t=0

βt
(
c1−ν

1− ν
− n1+γ

1 + γ

)
, (1)

where Et is an expectations operator conditioned on time t information and β ∈ (0, 1)

is a time discount factor.
Agent i who works ni,t hours supplies ϵi,tni,t units of effective labor, where ϵi,t

is an exogenous productivity process. Effective labor receives nominal wage PtWt,
where Pt is the nominal price of the final consumption good at time t. Labor income
is taxed at a proportional labor tax rate Υt. All agents receive a uniform lump sum
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transfer TtPt. Agents trade a one-period risk-free nominal bond with price Qt in units
of the final consumption good. We use Ptbi,t, PtBt to denote bond holdings of agent
i and the debt position of the government respectively. Πt denotes the net inflation
rate. Finally, di,t denotes dividends from intermediate goods producers measured in
units of the final good. Agent i’s budget constraint at t is

ci,t +Qtbi,t = (1−Υt)Wtϵi,tni,t + Tt + di,t +
bi,t−1

1 + Πt

. (2)

The government’s budget constraint at time t is

Ḡ+ Tt +
1

1 + Πt

Bt−1 = ΥtWt

∫
i

ϵi,tni,tdi+QtBt,

where Ḡ is the level of non-transfer expenditures.
A final good Yt is produced by competitive firms that use a continuum of inter-

mediate goods {yt(j)}j∈[0,1] in a production function

Yt =

[∫ 1

0

yt(j)
Φt−1
Φt dj

] Φt
Φt−1

,

where the elasticity of substitution Φt is stochastic. Final good producers take final
good prices Pt and intermediate goods prices {pt(j)}j as given and solve

max
{yt(j)}j∈[0,1]

Pt

[∫ 1

0

yt(j)
Φt−1
Φt dj

] Φt
Φt−1

−
∫ 1

0

pt(j)yt(j)dj. (3)

Outcomes of optimization problem (3) are a demand function for intermediate goods

yt(j) =

(
pt(j)

Pt

)−Φt

Yt,

and a nominal price satisfying

Pt =

(∫ 1

0

pt(j)
1−Φt

) 1
1−Φt

.
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Intermediate goods yt(j) are produced by monopolists with production function

yt(j) =
[
nDt (j)

]α
,

where nDt (j) is effective labor hired by firm j and α ∈ (0, 1]. These intermediate goods

monopolists face downward sloping demand curves
(
pt(j)
Pt

)−Φt

Yt and choose prices

pt(j) while bearing quadratic Rotemberg (1982) price adjustment costs ψ
2

(
pt(j)
pt−1(j)

− 1
)2

measured in units of the final consumption good. Firm j chooses prices {pt(j)}t that
solve

max
{pt(j)}t

E0

∑
t

βt
(
Ct
C0

)−ν

(
pt(j)

Pt

)−Φt

Yt

pt(j)
Pt

− Wt

α

((
pt(j)

Pt

)−Φt

Yt

) 1−α
α


− ψ

2

(
pt(j)

pt−1(j)
− 1

)2
}
, (4)

where we have imposed that each firm values profit streams with a stochastic discount
factor that is driven by aggregate consumption Ct =

∫
ci,tdi.4

In a symmetric equilibrium, pt(j) = Pt, yt(j) = Yt for all j. Market clearing
conditions in labor, goods, and bond markets are:

Nt =

∫
ϵi,tni,tdi, Dt = Yt −WtNt −

ψ

2
Π2
t , (5)

yt(j) = Yt = Nα
t , (6)

Ct + Ḡ = Yt −
ψ

2
Π2
t , (7)∫

i

bi,tdi = Bt. (8)

There are aggregate and idiosyncratic shocks. Aggregate shocks are a “markup”
shock5 Φt and an aggregate productivity Θt. The markup shock follows an AR(1)

4In economies with heterogeneous agents and incomplete markets one has to take a stand on
how firms are valued. Using stochastic discount factor induced by aggregate consumption makes
our exposition most transparent. We have experimented with other alternatives such as weighted
means of individual intertemporal marginal rates of substitutions and found them to have negligible
effects on the main results.

5The New Keynesian literature has utilized markup or cost-push shocks to account for patterns
observed during business cycles (see, e.g., Smets and Wouters (2007)). The literature has proceeded
to study implications of those shocks for optimal monetary policy in a representative agent framework
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stochastic process

lnΦt = ρΦ lnΦt−1 + (1− ρΦ) ln Φ̄ + EΦ,t,

where EΦ,t is mean-zero and i.i.d. over time. We consider two alternative specification
for productivity shocks. In the first specification, we simply assume that lnΘt follows
an AR(1) process described by

lnΘt = ρΘ lnΘt−1 + (1− ρΘ) ln Θ̄ + EΘ,t, (9a)

where EΘ,t is mean zero and i.i.d. over time. In the second specification we assume
that lnΘt follows a growth rate shock process

lnΘt = lnΘt−1 + EΘ,t, (9b)

where again EΘ,t is mean zero and i.i.d. over time. Under the growth rate specification,
we scale government expenditures at time t to equal Gt = ḠΘt where Ḡ is a non-
negative constant and menu cost so that ψt = ψ̄Θt for some non-negative constant ψ̄
to achieve stationarity.6

Individual productivity ϵi,t follows a stochastic process described by

ln ϵi,t = lnΘt + ln θi,t + εϵ,i,t, (10)

ln θi,t = ρθ ln θi,t−1 + f (θi,t−1) EΘ,t + εθ,i,t, (11)

where εϵ,i,t and εθ,i,t are mean-zero, uncorrelated with each other and i.i.d. over time.
This specification of idiosyncratic shocks builds on formulations of wage dynamics
used by Storesletten et al. (2001) and Low et al. (2010)) in which εϵ,i,t and εθ,i,t corre-
spond to transitory and persistent shocks to individual productivities. We augment
this specification with a function f (θi,t−1) that makes an aggregate productivity shock
have different loadings for agents with different earning histories. Doing that allows

(see, e.g., Clarida et al. (2001), Galí (2015), Woodford (2003)). As in Galí (2015), we interpret these
shocks as changes in desired markups arising from fluctuations in the elasticity of substitution
parameter Φ. We leave for future work the study of other shocks such as wage markups.

6General insights are similar from these two alternative specifications, but the i.i.d growth speci-
fication provides a convenient benchmark to study monetary policy because without market incom-
pleteness and nominal frictions, the real interest rate is constant.
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us to capture some of the facts documented by Guvenen et al. (2014).
We normalize the initial price level P−1 = 1. Agent i in period 0 is characterized

by a triple (θi,−1, bi,−1, si), where θi is agent i’s persistent productivity component,
bi,−1 the initial holding of debt, and si the ownership of equity. Agent i’s dividends
in period t are given by di,t = siDt. This imposes that agents do not trade equity
and that si is a permanent characteristic. We refer to the collection {θi,−1, bi,−1, si}i
as an initial condition.

Definition 1. Given an initial condition and a monetary-fiscal policy {Qt,Υt, Tt}t, a
competitive equilibrium is a sequence

{
{ci,t, ni,t, bi,t}i , Ct, Nt, Bt,Wt, Pt, Yt, Dt

}
t
such

that: (i) {ci,t, ni,t, bi,t}i,t maximize (1) subject to (2) and natural debt limits; (ii)
final goods firms choose {yt(j)}j to maximize (3); (iii) intermediate goods producers’
prices solve (4) and satisfy pt(j) = Pt; and (iv) market clearing conditions (5)-(8) are
satisfied.

A utilitarian Ramsey planner orders allocations by

E0

∫ ∞∑
t=0

βt

[
c1−νi,t

1− ν
−
n1+γ
i,t

1 + γ

]
di. (12)

Definition 2. Given an initial condition and a constant tax sequence {Υt}t satisfying
Υt = Ῡ for some Ῡ, an optimal monetary policy is a sequence {Qt, Tt} t that supports a
competitive equilibrium allocation that maximizes (12). Given an initial condition, an
optimal monetary-fiscal policy is a sequence {Qt,Υt, Tt}t that supports a competitive
equilibrium allocation that maximizes (12). A maximizing monetary or monetary-
fiscal policy is called the Ramsey plan; an associated allocation is called the Ramsey
allocation.

A few remarks about our baseline formulation. We begin by assuming natural
debt limits. This provides us with a useful benchmark and also avoids issues about
normative implications in economies with ad hoc debt limits being sensitive to as-
sumptions one makes on a government’s ability to enforce debt and tax repayments.7

7In Bhandari et al. (2017b) we provide a comprehensive treatment of a Ramsey problem with ad
hoc debt limits. In the economy with ad hoc debt limits the planner can simply choose the timing
of transfers to undo such ad hoc debt limits. If the planner enforces debt and tax liabilities equally
then welfare in the economies with ad hoc and natural debt limits coincides. Welfare can sometimes
be improved in the economy with ad hoc debt limits if the planner commits not to enforce private
debt contracts (see also Yared (2013) for a related result).
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After presenting results with natural debt limits, we introduce credit market frictions
in section 6. We discipline these frictions by matching observed heterogeneity in the
marginal propensities to consume and study how these frictions affect the Ramsey
plans. Assuming that equity ownership is fixed provides us with a simple way to cal-
ibrate portfolio shares.8 We have distinguished between purely monetary and mixed
monetary-fiscal policies because doing so allows us to respect a common argument
that institutional constraints make it difficult to adjust tax rates in response to typical
business cycle shocks, leaving nominal interest rates as the government’s only tool for
ameliorating such shocks. We capture that argument by studying optimal monetary
policy when tax rates {Υt}t are fixed at some level Ῡ. The monetary-fiscal Ramsey
plan evaluates the optimal policies when this restriction is dropped.

3 Solution method

Following steps used by Lucas and Stokey (1983), Schmitt-Grohe and Uribe (2004),
and others it is straightforward to establish that a monetary-fiscal policy {Qt,Υt, Tt}t
and

{
{ci,t, ni,t, bi,t}i , Ct, Nt,Wt, Pt, Yt, Dt

}
t
are a competitive equilibrium if and only

if they satisfy (2), (5)-(7) and

(1−Υt)Wtϵi,tc
−ν
i,t = nγi,t, (13)

Qt−1c
−ν
i,t−1 = Et−1c

−ν
i,t (1 + Πt)

−1 , (14)

1

ψ
Yt

[
1− Φt

(
1− Wt

αNα−1
t

)]
−Πt(1+Πt)+βEt

(
Ct+1

Ct

)−ν

Πt+1(1+Πt+1) = 0. (15)

To formulate the Ramsey problem, it is convenient to rewrite some of these con-
straints. After defining ai,t ≡ bi,tQtc

−ν
i,t , substituting for Qt and (1 − Υt)Wt, and

solving the budget constraint forward, equations (2) can be expressed as a sequence
of measurability constraints inherited from the risk-free nature of one-period debt:

ai,t−1c
−ν
i,t (1 + Πt)

−1

βEt−1c
−ν
i,t (1 + Πt)−1

= Et

[
∞∑
s=0

βs
(
c1−νi,t+s − c−νi,t+s(Tt+s + siDt+s)− n1+γ

i,t+s

)]
(16)

8More generally, one needs some adjustment costs to reconcile agents’ portfolio choices with those
observed in data. Exploring normative implications of alternative cost specifications is interesting
but outside the scope of the paper.
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for t ≥ 1 as well as a similar constraint at t = 0 in which the left hand side is replaced
with bi,−1c

−ν
i,0 . Define

m
1/ν
i,t ≡ ci,t

Ct
(17)

and rewrite Euler equation (14) as

C−ν
t−1Qt−1 = βmi,t−1Et−1c

−ν
i,t (1 + Πt)

−1. (18)

Variable mi,t can be interpreted as a time-t Pareto-Negishi weight of agent i. It will
serve as a state variable in a recursive formulation of the Ramsey problem.

We formulate the Ramsey problem using ideas of Marcet and Marimon (2011). Let
βtΛt, βtξi,t be Lagrange multipliers on (15) and (16), respectively. Define µi,0 ≡ ξi,0,
µi,t = µi,t−1 + ξi,t. Given an initial condition {θi,−1, bi,−1, si}i, and Λ−1 = ai,−1 = 0,
the Ramsey monetary-fiscal problem solves:

inf sup E0

∞∑
t=0

βt

{∫ [(
c1−νi,t

1− ν
−
n1+γ
i,t

1 + γ

)
+
(
c1−νi,t − c−νi,t (Tt + siDt)− n1+γ

i,t

)
µi,t

−
ai,t−1c

−ν
i,t (1 + Πt)

−1ξi,t

βEt−1

[
c−νi,t (1 + Πt)−1

] + (1− β)c−νi,0 bi,−1µi,0di (19)

+ ΛtC
−ν
t Yt

[
1− Φt

(
1− Wt

αNα−1
t

)]
+ (Λt−1 − Λt)C

−ν
t ψΠt(1 + Πt)

}
,

subject to (5), (6), (7), (13), (17), (18) and µi,t = µi,t−1 + ξi,t, where the sup is
with respect to

{
{ci,t, ni,t, bi,t}i , Ct, Nt, Bt,Wt, Pt, Yt, Dt

}
t
, and inf is with respect to

the multipliers {µi,t,Λt}t. The Ramsey monetary problem is the same except the
sequence {Υt}t is exogenously fixed.

We call the subsequence of the Ramsey plan for t ≥ 1 a continuation Ramsey plan.
It is recursive in aggregate states (Θt−1,Φt−1), the Lagrange multiplier on the Phillips
curve equation Λt−1, and the joint distribution over zi,t−1 ≡ (mi,t−1, µi,t−1, θi,t−1, si)

that we denote by Ωt−1. Time t policy functions for aggregate variables depend on
(Θt−1,Φt−1,Ωt−1,Λt−1, EΘ,t, EΦ,t) while time t policy functions for individual variables
also depend on (zi,t−1, εϵ,i,t, εθ,i,t). The Ramsey plan includes choices at time 0 and
solves time t = 0 first-order conditions subject to the restriction that future variables
conform to the continuation Ramsey plan.

Dependence of policy functions on the history-dependent endogenous distribu-
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tion Ω makes computing the Ramsey plan challenging. The law of motion of the
high-dimensional state variable Ω depends on optimal monetary-fiscal policies. As we
discussed in the introduction, a key difficulty is that before optimal policies are com-
puted little can be said about properties of the stochastic process Ωt and its invariant
distribution. This structure renders inapplicable computational techniques for solv-
ing heterogeneous agent economies that approximate around a stationary distribution
associated a fixed set of government policies.

To overcome this difficulty we develop a new computational method that builds
on the perturbation theory of Fleming (1971), Fleming and Souganidis (1986), and
Anderson et al. (2012) as well as on Evans (2015). The method constructs a sequence
of small-noise expansions of policy functions around pertinent time t state variables.
Using this approach, we first approximate optimal policy functions at time t around
the time-t state including Ωt−1, then use those to compute Ωt, and finally construct
approximations of optimal policy functions at time t+ 1 around the time-t+ 1 state
including Ωt. To begin, we illustrate our approach in a simple setting. We next extend
things to the more general setting of section 2. Detailed derivations, proofs, and other
details are relegated to the online appendix where we also show how our method can
be used to solve for a competitive equilibrium with fixed government policies and
we use that economy to test the accuracy of our approximations by comparing our
solution to one obtained with standard numerical methods.

3.1 Approximations in the simple economy

We focus here on a special case designed to show the main steps and insights trans-
parently. We assume that all shocks are i.i.d. and that there is a single non-trivial
aggregate shock E and a single non-trivial idiosyncratic shock ε (say, EΘ,t and εθ,i,t).
Furthermore, we assume that agents have identical equity holdings si = 1, in which
case one can show that Λt = 0 for all t. These assumptions make Ω the only aggregate
state variable for the t ≥ 1 continuation Ramsey plan; Ω becomes a distribution over
the two-dimensional space of z = (m,µ). This is the minimal structure needed to
illustrate our method.9

9The distribution of states Ω is defined over a two-dimensional space because the Ramsey planner
needs to keep track of two variables for each agent: a variable capturing agent’s current assets and
a variable capturing past implicit promises of the planner which comes from the need to search for
optimal policies. In the recursive formulation of competitive equilibrium with fixed policies, Ω is a
distribution over a one dimensional space of agents’ Pareto-Negishi weights (or, equivalently, their
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We use tildes to denote policy functions in the t ≥ 1 continuation Ramsey plan.
The aggregate policy functions consist of all upper-case choice variables in problem
(19) as well as Lagrange multipliers on aggregate resource constraints (5)-(7). We
denote the vector of these functions by X̃. Individual policy functions consist of
all lower-case choice variables in problem (19) as well as Lagrange multipliers on
individual constraints (13), (17), (18); we denote the vector of these variables by x̃.
Policy functions for individual states z̃ are included in the vector x̃ and we define p

to be the selection matrix that returns z̃ from x̃, i.e., z̃ = px̃.
Consider the full set of first-order optimality conditions to problem (19). These

conditions can be split into two groups. The first group consists of the optimality
conditions for individual policy functions. They show the relationship between current
period individual and aggregate policy functions x̃, X̃, current period realizations of
shocks ε, E , and expectations of current and next period policy functions E [x̃|z,Ω],
E
[
x̃(·, ·, z̃(z,Ω, ε, E), Ω̃(Ω, E))|ε, E , z,Ω

]
. To keep the notation short, we denote the

two expectations terms by E−x̃ and E+x̃ respectively.10 These conditions can be
written as

F
(
E−x̃, x̃,E+x̃, X̃, ε, E ,z

)
= 0 (20)

for some mapping F . The remaining optimality conditions are various aggregate
feasibility constraints and first-order conditions with respect to X̃ that show the
relationship between aggregate policy functions and integrals of individual policy
functions. They can be written as

R

(∫
x̃dΩ, X̃, E

)
= 0 (21)

for some mapping R. The law of motion for the distribution Ω is

Ω̃ (E ,Ω) (z) =
∫
ι (z̃ (ε, E ,y,Ω) ≤ z) dPr (ε) dΩ (y) ∀z, (22)

where ι (z̃ ≤ z) is 1 if all elements of z̃ are less than all elements of z, and zero
otherwise. Equations (20)-(22) jointly determine the Ramsey allocation.

asset holdings).
10Strictly speaking, if x̃ consists of all lower-case choice variables and multipliers in problem (19),

then the relevant object is E−f(x̃) and E+g(x̃) for some transformations f and g. Our exposition
is without loss of generality once we expand the definition of x̃ to also include variables f (x̃) and
g (x̃).
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To approximate policy functions, we consider a family of economies parameter-
ized by a positive scalar σ that scales all shocks ε, E . We construct first-, second-,
and higher-order approximations with respect to σ evaluated at σ = 0. Since, the
parameter σ affects policy functions directly in addition to scaled shocks (σε, σE), we
record it as an extra argument. The first-order expansion of X̃ reads

X̃(σE ,Ω;σ) = X̃(0,Ω; 0) + σ
(
X̃E(0,Ω; 0)E + X̃σ(0,Ω; 0)

)
+O(σ2)

≡ X̄ + σ
(
X̄EE + X̄σ

)
+O(σ2), (23)

where X̃E and X̃σ are derivatives with respect to the first and third arguments, and
bars indicate that functions are evaluated at (0,Ω; 0). The same convention applies
to the law of motion Ω̃ (σE ,Ω;σ), e.g. Ω̄ = Ω̃ (0,Ω; 0). Individual policy functions x̃

are expanded analogously as

x̃(σε, σE ,z,Ω;σ) = x̄(z) + σ (x̄ε(z)ε+ x̄E(z)E + x̄σ(z)) +O(σ2). (24)

We describe next how to obtain the coefficients that appear in these expansions by
using the implicit function theorem.

3.1.1 Points of expansion and zeroth-order terms

Our point of expansion σ = 0 is a deterministic economy. It is easy to see that the
law of motion for distribution Ωt is particularly simple in this case: if the economy
starts with any given Ω0, it remains with that distribution forever. Formally,

Lemma 1. For any Ω, policy functions satisfy z̄(z) = z for any z and therefore
Ω̄(Ω) = Ω.

The fact that the distribution remains stationary at σ = 0 simplifies our analysis.
Although at first sight this result appears to be sensitive to the simplifying assump-
tions made in this section, we show later that by a careful choice of the individual
state variables one can obtain an analogue of lemma 1 even if the σ = 0 economy
features non-trivial deterministic dynamics.

Lemma 1 implies that the expectation of next period’s functions is simply equal
to their current period value at the point of expansion. Therefore, we can find X̄ and
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x̄(z) as a solution to a non-linear system of equations

F
(
x̄(z), x̄(z), x̄(z), X̄, 0, 0, z

)
= 0, R

(∫
x̄(z)dΩ(z), X̄, 0

)
= 0.

This system can be solved efficiently using standard root finding algorithms.
Using the zeroth-order terms X̄ and x̄(z), we construct several objects that will be

used to find higher-order terms. Let Rx and RX be the derivatives of the R mapping
with respect to its first two arguments, and let RE be the derivative with respect to the
scaled shock σE , all evaluated σ = 0. Similarly, let subscripts x−,x, x+, X, ε, E and
z denote the analogous derivatives of F with respect to each of its arguments. From
the implicit function theorem we have x̄z(z) = [Fx−(z) + Fx(z) + Fx+(z)]

−1 Fz(z).

3.1.2 First-order terms

That aggregate shocks in period t affect the distributional state Ω in period t + 1

makes calculating mathematical expectations of next period variables in equation
(20) hard. A principal contribution of our approach is to simplify calculation of these
expectations. The first step towards this goal is to use lemma 1 to show that

E
[
x̃(·, ·, z̃(z,Ω, ε, E), Ω̃(Ω, E))|ε, E ,z,Ω

]
=x̄(z) +

[
x̄z(z)px̄E(z) + ∂x̄(z) · Ω̄E

]
σE

+ [x̄z(z)px̄ε(z)]σε+ x̄σ(z)σ +O(σ2),

E [x̃(·, ·, z,Ω)] =x̄(z) + x̄σ(z)σ +O(σ2),

where ∂x̄ is the Frechet derivative of x̄ with respect to the distribution Ω.11 The
term ∂x̄(z) · Ω̄E tells how current period’s shock E influences the expectation of next
period’s policy function through its effect on next period’s distribution Ω. Formally,
Ω̄E is the derivative of the law of motion (22) with respect to σE evaluated at σ = 0

and ∂x̄(z) · Ω̄E is the Frechet derivative ∂x̄(z) evaluated at the point Ω̄E .
The derivative ∂x̄(·) is high dimensional. Calculating it explicitly would be infea-

sible when the state space is large. Luckily, we need to know the derivative only at
11A Frechet derivative ∂x̄(z) is a linear operator from the space of distributions Ω to R with a

property that lim∥∆∥→0
∥x̄(z,Ω+∆)−x̄(z,Ω)−∂x̄(z)·∆∥

∥∆∥ = 0. It can be found by fixing a feasible direction

∆ and calculating a directional (Gateaux) derivative since ∂x̄(z) · ∆ = limα→0
x̄(z,Ω+α∆)−x̄(z,Ω)

α .
See Chapter 7 of Luenberger (1997). Throughout, we assume that ∆ vanishes on the boundaries of
its domain, R+ × R.
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the point Ω̄E . The next theorem shows that there exists a simple linear relationship
between ∂x̄ · Ω̄E and x̄E that can be solved explicitly.

Theorem 1. (Factorization) From the zeroth-order expansion one can construct
matrices A(z) and C(z) such that

∂x̄(z) =C(z)∂X̄, (25a)

∂x̄(z) · Ω̄E = C(z)∂X̄ · Ω̄E︸ ︷︷ ︸
X̄′

E

=C(z)

∫
A(y)x̄E(y)dΩ (y) . (25b)

Proof. Evaluate the Frechet derivatives of (20) and (21) at an arbitrary point ∆ and
use the fact that ∂Ω̄ = 1 from lemma 1 to show that

(Fx−(z) + Fx(z) + Fx+(z)) ∂x̄(z) ·∆+ FX(z)∂X̄ ·∆ = 0, (26a)

Rx∂

(∫
x̄ (y) dΩ (y)

)
·∆+ RX∂X̄ ·∆ = 0. (26b)

The first equation yields (25a) with C(z) = − (Fx−(z) + Fx(z) + Fx+(z))
−1 FX(z).

By calculating directional derivatives in direction ∆ we can show that

∂

(∫
x̄ (y) dΩ (y)

)
·∆ =

∫
(∂x̄ (y) ·∆) dΩ (y) +

∫
x̄ (y) d∆(y) . (27)

We want to evaluate the integral on the right side at ∆ = Ω̄E . Differentiating (22) at
any z = (m,µ) and applying lemma 1, we show that

Ω̄E (m,µ) = −
∫
y2≤µ

m̄E (m, y2)ω (m, y2) dy2 −
∫
y1≤m

µ̄E (y1, µ)ω (y1, µ) dy1,

where ω is the density of Ω. The density of Ω̄E (m,µ) is then

ω̄E (m,µ) = − d

dm
[m̄E (m,µ)ω (m,µ)]− d

dµ
[µ̄E (m,µ)ω (m,µ)] .
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Substitute this equation and (25a) into (27) to get

∂

(∫
x̄ (y) dΩ (y)

)
· Ω̄E =

∫
C(y)∂X̄ · Ω̄EdΩ (y)−

∫
x̄ (y)

d

dm
[m̄E (y)ω (y)] dy

−
∫

x̄ (y)
d

dµ
[µ̄E (y)ω (y)] dy

=

∫
C(y)∂X̄ · Ω̄EdΩ (y) +

∫
x̄z (y) px̄E (y) dΩ (y) ,

where the second equality is obtained using integration by parts. Substitute this
expression into (26b) and solve for ∂X̄ · Ω̄E to obtain

X̄ ′
E ≡ ∂X̄ · Ω̄E =

∫
A(y)x̄E(y)dΩ (y) , (28)

where A(z) = −
(
Rx

∫
C(y)dΩ (y) + RX

)−1
Rxx̄z(z)p. Together with (25a) this proves

(25b).

The factorization theorem makes our approach computationally tractable when
state space Ω is large. To see its significance, suppose that we approximate Ω on a
grid with K points. In that case, the Frechet derivative of individual policy func-
tions ∂x̄(·) contains K2 unknown elements. Since the number of the unknowns grows
exponentially with the number K of grid points, calculating this derivative directly
would be infeasible for large K. Theorem 1 circumvents this problem by providing an
explicit formula for the value of the derivative ∂x̄(·) at the point Ω̄E as a linear func-
tion of (yet unknown) x̄E (z) weighted with coefficients given by matrices A(z),C(z).
Matrices A(z),C(z) can be calculated quickly from the zeroth-order terms since the
only non-linear operation required is inversion of matrices of dimension no greater
than max {dimx, dimX}. Because A(z),C(z) can be calculated for different values
of z independently, the algorithm is easy to parallelize, a good thing when K is very
large.

An economic intuition underlies derivations in the proof of theorem 1. In com-
petitive equilibrium agents care about the distribution Ω only to the extent it affects
aggregate prices and income. Thus, the effect from any perturbation of distribution
Ω on individual variables, ∂x̄, can be factorized into the effect of that perturbation
on aggregate variables, ∂X̄, and a known loading matrix C that captures how indi-
vidual variables respond to changes in the aggregates. Equation (25a) captures this
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relationship. Feasibility and market clearing constraints impose a tight relationship
between individual policy function responses to aggregate shocks in the current pe-
riod, x̄E(z), and expected future changes in the aggregates, X̄ ′

E . Conceptually, this
relationship is the a fixed point problem and we derive an explicit solution in equation
(28). Together with (25a), this allows us to find ∂x̄ ·Ω̄E in terms of x̄E without having
to compute ∂x̄(·).

We can now take the first-order expansion of (20) and (21), apply the factorization
theorem, and use the method of undetermined coefficients to find X̄E , X̄σ, x̄E , x̄ε, x̄σ.
We illustrate how this is done for X̄E , x̄E . Consider the first-order expansion of the
left hand side of equations (20) and (21). Because this expansion should be equal to
0 for all values of E , the matrices of coefficients that multiply E should equal 0 as
well. Solving for these matrices explicitly, we obtain a system of equations

(Fx(z) + Fx+(z)x̄z(z)p) x̄E(z) + Fx+(z)C(z)X̄
′
E + FX(z)X̄E + FE(z) = 0, (29a)

Rx

∫
x̄E(y)dΩ (y) + RXX̄E + RE = 0. (29b)

This is a linear system with unknowns X̄E , x̄E after we substitute the definition of X̄ ′
E

from (28). Solving the discretized version directly would require inverting a square
matrix of dimension K dimx, which is impractical when the dimension of the grid
(K) is large. A more computationally efficient approach is to split this system into
K independent systems of dimensions dimx that can be solved in parallel. To this
end, use equation (29a) to calculate matrices D0(z) and D1(z) that define the linear
relationship

x̄E(z) = D0(z) + D1(z) ·
[
X̄E X̄ ′

E

]T
.

Then use this relationship to substitute into equations (29b) and (28) to find X̄E .
Values of x̄E(z) can be found either by substituting back into the previous equation
or from (25a).

The remaining unknown first-order coefficients X̄σ, x̄ε, x̄σ can be found using sim-
ilar steps. The steps for computing them are much simpler since they do not depend
on the Frechet derivative ∂x̄.
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3.1.3 Second- and higher-order expansions

Our approach extends to second- and higher-order expansions while preserving the
computationally convenient linear structure. The key insight is that the factorization
theorem generalizes to higher order expansions. The analogue of equation (25a) holds
for any order of perturbations of Ω. This allows us to solve for higher order analogues
of ∂x̄ · Ω̄E explicitly as weighted sums of higher-order coefficients x̄EE , x̄Eσ, x̄σσ . . .,
with weights known from lower-order expansions. We then can form higher order
analogues of the system of equations (29). As before, the mathematical structure of
these equations allows us to split one large system of equations into a large number of
low dimensional linear problems that can be solved fast and simultaneously. Formal
proofs and constructions are notation-intensive but the steps mirror those in section
3.1.2 and we confine them to the online appendix.

3.2 Approximations in the general case

We now turn to the economy described in section 2. For concreteness we focus on the
case when lnΘt follows an AR(1) process (9a). This economy has two differences from
the section 3.1 simpler economy. First, since shocks are persistent, policies also depend
on previous period values Θ = (Θ,Φ) and θ. Second, the Philips curve constraint
(15) generally binds and its Lagrange multiplier Λ becomes a state variable. Thus, in
the general economy z = (m,µ, s, θ) is the individual state, Ω is a distribution over
this four-dimensional state space, and the aggregate and individual policy functions
are mappings X̃ (E ,Ω,Θ,Λ) and x̃ (E , ε,z,Ω,Θ,Λ) respectively.

To make progress, we assume that persistence of idiosyncratic shocks ρθ is close to
1 so that we can represent it as ρθ = 1− σρ for some ρ ≥ 0. We follow the approach
of the previous section by considering a sequence of economies with scaled shocks σE
and σε and persistence 1− σρ. We take their first- and second-order expansion with
respect to σ evaluated at σ = 0 around any given distribution Ω. Let X̄ (Θ,Λ) and
x̄ (z,Θ,Λ) be their zeroth-order values.

Our general economy can have non-trivial dynamics even when σ = 0. This would
present a difficulty if the complicated part of the state space – the distribution Ω –
also changed over time. A judicious choice of state variables allows us to avoid this
complication.
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Lemma 2. For any Ω, policy functions satisfy z̄ (z,Θ,Λ) = z for any (z,Θ,Λ) and
therefore Ω̄ (Θ,Λ) = Ω for any Θ,Λ.

The intuition is as follows. There are multiple mathematically equivalent ways
to choose individual state variables. We chose them to be Pareto-Negishi weights
m and multipliers on implementability constraints µ. In the deterministic economy
(or, more generally, in a complete market economy as in Lucas and Stokey (1983)
or Werning (2007)) these weights are constant over time, even when other choices of
state variables, such as agents’ debt levels, would not be.

Lemma 2 paves a way for the natural extension of our algorithm from section
3.1. Start with any (Θ0,Λ0) and compute the deterministic transition dynamics
as {Θt,Λt}t converge to the steady state. The steady state value of Θ is simply
Θ̄ =

(
Θ̄, Φ̄

)
, while the steady state value of Λ, that we denote by Λ̄, is pinned down

by a single non-linear equation Λ̃
(
0,Ω, Θ̄, Λ̄; 0

)
= Λ̄. Theorem 1 and its higher-order

generalizations continue to hold along the transition path of {Θt,Λt}t, allowing one to
solve for the coefficients in expansions of policy functions using backward induction,
as in Anderson et al. (2012). This procedure can be further simplified by simply
expanding x̃ (E , ε,z,Ω,Θ,Λ) and X̃ (E ,Ω,Θ,Λ) around Θ = Θ̄ and Λ = Λ̄ rather
than solving for the full transition dynamics {Θt,Λt}t . The online appendix describes
how implement both approaches.

4 Calibration and computations

We choose three sets of parameters: (i) parameters governing preferences, technol-
ogy and aggregate shocks; (ii) initial conditions; and (iii) stochastic processes for
idiosyncratic shocks.

Preferences, technology, aggregate shocks

Our settings of aggregate parameters align with standard representative agent cal-
ibrations such as Schmitt-Grohe and Uribe (2004) and Siu (2004). We set utility
function parameters at ν = 1, γ = 2, and the discount factor β at 0.96. We assume
that firms operate a constant returns to scale technology and set α = 1. To a first
approximation, average markups are

(
Φ̄− 1

)−1 and the slope of the Phillips curve is(
Φ̄− 1

)
/ψ. We set Φ̄ = 6 to attain average markups of 20% and ψ = 20 to match
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the slope of the Phillips curve as estimated by Sbordone (2002).12 We set government
non-transfer expenditures Ḡ at 0.09 in order to match the average federal government
current expenditures net of transfer payments to annual GDP from the NIPA for the
period 1947-2016.

The stochastic process for the markup shocks is calibrated to be consistent with
that estimated in Smets and Wouters (2007) with the AR coefficient of 0.65 and the
volatility of the innovation to lnΦ such that a one standard deviation negative shock
EΦ raises firms’ optimal markups by about 0.5 percentage points. We set the standard
deviation of EΘ at 3% to approximate the process for output per worker in the U.S.
In the AR(1) specification of TFP shocks we set ρΘ = 0.8 and Θ̄ = 1.

Initial conditions

We use the 2007 wave of the Survey of Consumer Finances (SCF) to calibrate the
initial distribution of wages, debt, and equity holdings. We restrict our sample to
married households who work at least 100 hours. To measure bond holdings, we
sum direct and indirect holdings of government bonds through mutual funds (taxable
and nontaxable), saving bonds, liquid assets (net of unsecured credit), money market
accounts, and components of retirement accounts that are invested in government
bonds. To measure equity holdings we sum direct holdings of equities and indirect
holdings through mutual funds and retirement accounts.13

To fit initial states {θi,−1, bi,−1, si} to data, we sample directly from the SCF
log wages, debt and shares of equity using 2007 wave sampling weights. The SCF
provides population weights for each observation. Given these weights, we set the
initial condition by drawing with replacement a random sample of 100000 agents from
a discrete distribution. In our SCF sample, 30% of households hold zero equities; the
distribution of equities among the remaining households is right skewed with the top
10% of agents holding about 60% of total equities. Debt holdings, equity holdings,
and wages are positively correlated. Table I reports summary statistics of the data
and our fit.

12Using quarterly data, Sbordone (2002) estimates the slope of the U.S. Phillips curve to be about
0.06. Since our calibration uses annual frequency, we multiply her number by 4.

13We drop observations where equity or bond holdings are more than 100 times average yearly
wage. These turned out to be about 0.5% of the total sample.
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TABLE I: FIT OF THE INITIAL DISTRIBUTION

Data Model
fraction of pop. with zero equities 30% 30%
std. share of equities 2.62 2.61
std. bond 4.90 5.23
std. ln wages 0.81 0.82
corr(share of equities,ln wages) 0.40 0.39
corr(share of equities,bond holdings) 0.59 0.55
corr(bond,ln wages) 0.32 0.30

Notes: The moments in the data column corresponds to SCF 2007 wave with sample restrictions
explained in the text and after scaling wages, equity holdings, and debt holdings by the average
yearly wage in our sample. The share of equities refers to the ratio of individual equity holdings to
the total in our sample such that the weighted sum of shares equals one.

Stochastic process for idiosyncratic shocks

We set the stochastic process for idiosyncratic shocks to match some facts about
labor earnings reported by Storesletten et al. (2004) and Guvenen et al. (2014). In
the model, labor earnings depend both on the stochastic process for skill ϵi,t and on
monetary-fiscal policy. We calibrate them to fit a competitive equilibrium in which
interest rates and tax rates are set to match stylized features of U.S. policies, namely,

Q−1
t − 1 =

1

β
+ 1.5Πt, Υt = 0.25. (30)

This Taylor rule parameterization for nominal rates is common in the literature, while
the calibrated tax rate matches estimates of the federal average marginal income tax
rate reported by Barro and Redlick (2011), who also show that it is largely acyclical
at business cycle frequencies.

To calibrate parameters governing stochastic processes (10) and (11), we simulate
log earnings for 100000 agents using a competitive equilibrium with the initial con-
dition and government policies as described above. Shocks εϵ,i,t, εθ,i,t are Gaussian.
Storesletten et al. (2004) estimates a transitory/persistent component model of log
earnings using the PSID. We targeted their estimates by setting the parameter ρθ to
match the autocorrelation of the persistent component of log earnings, parameters
std(εϵ,i,t), std(εθ,i,t) to match the standard deviation of the transitory and persistent
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TABLE II: PARAMETERS FOR IDIOSYNCRATIC SHOCKS PROCESSES

Parameters Values Targeted moment Values Source

s.d of εϵ 0.17 s.d. of transitory
component in log earnings

0.25 Storesletten
et al. (2004)

s.d. of εθ 0.12 s.d. of persistent
component in log earnings

0.12

ρθ 0.99 autocorr of persistent
component in log earnings

0.99

f2, f1, f0 0.28,−0.52,
0.00

relative (to median)
earnings losses 5th, 50th &
95th percentiles

see
text

Guvenen
et al. (2014),
see figure I

Notes: The parameters in this table characterize the stochastic processes in equations (10) and (11).

components of log earnings.14

Guvenen et al. (2014) report earnings losses in the four recessions between 1978-
2010 by percentiles of 5 year averages of pre-recession earnings. These provide us
with moments that we use to construct the loading function f(θ). We assume a
quadratic form f(θ) = f0 + f1θ + f2θ

2 and calibrate {f0, f1, f2} as follows. We first
normalize Guvenen et al. (2014) reported earning losses for each percentile by the
median earnings losses and average across all four recessions to obtain a profile of
relative (to median) earnings losses. This is the dashed line in figure I. We next
simulate the competitive equilibrium for 50 periods with a recession that is ignited
by one standard deviation negative TFP shock. Following the empirical procedure
in Guvenen et al. (2014), we rank workers by percentiles of their average log labor
earnings 5 years prior to the shock and compute the percent earnings loss for each
percentile relative to the median. The parameters f0, f1, f2 are set to match earnings
losses of the 5th, 50th and 95th percentiles. Our model’s counterpart to Guvenen et al.
(2014) is the solid line in figure I. Parameters governing the process for idiosyncratic
shocks are summarized in table II.

14In the model, we compute these cross-sectional moments by simulating a panel of log earnings
from the competitive equilibrium with 100000 agents after turning off aggregate shocks for a sample
of length 50 periods.
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Figure I: Relative (to median) earnings losses by percentiles of 5 year average pre-recession
log earnings. The data line is constructed using moments from Guvenen et al. (2014) who
report the profile of earnings losses in the last 4 recessions (1978-2010). In the model line,
we use simulated earnings before and after a one standard deviation TFP shock.
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Computations

We use our second-order expansion formulas to approximate Ramsey policies. To com-
pute the optimal monetary policy, we set Ῡ to the optimal level in the non-stochastic
environment with the same the initial condition. At every history we discretize the
distribution across agents with K = 2000 grid points that we choose each period us-
ing a k-means clustering algorithm. We apply our algorithm to approximate optimal
policies, use Monte Carlo simulation to draw idiosyncratic shocks and finally compute
the aggregate distribution next period for a given history of aggregate shocks. The al-
gorithm is then repeated with the new distribution. The details of how to implement
the simulation steps are in the online appendix.

We focus on optimal policy responses to aggregate shocks EΦ,t, EΘ,t. These re-
sponses depend on the underlying state. To compute them we draw 100 histories of
shocks {EΦ,t, EΘ,t}25t=0. To calculate an impulse response, say, to productivity shock
EΘ,k, of size δ in period k, we create two replicas of these draws. In one replica we
replace EΘ,k from 0 and in the other with δ. We then integrate over all histories to ob-
tain expected paths conditional on EΘ,k = 0 and on EΘ,k = δ. Our impulse responses
are the differences in the two paths. Since those paths are the same by construction
for all t < k, we draw all the graphs starting with t = k. For concreteness we report
all responses for k = 5.15

5 Results

We study optimal monetary and monetary-fiscal responses to one standard deviation
negative shocks to EΦ,t and EΘ,t. These responses are primarily shaped by two goals.
The first is price stability, which is also present in representative agent New Keynesian
models. Price changes are costly and by pursuing stable prices the planner can
mitigate these costs. The second is provision of insurance, a goal that arises from
heterogeneity and market incompleteness because aggregate shocks affect different
agents differently. If agents could trade a complete set of Arrow securities, they
would insure these shocks away and maintain constant consumption shares. Our

15As often occurs (for example, see Lucas and Stokey (1983), Schmitt-Grohe and Uribe (2004))
Ramsey policy at time t = 0 differs from continuation Ramsey policies for t > 1, being functions
of different arguments. In our economy, by t = 5, transient effects of time 0 actions have mostly
dissipated.
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assumptions rule out those trades. The planner uses monetary and fiscal policies to
make the distribution of gains and losses more equal.

In what follows we compare optimal responses in our economy to those in a rep-
resentative agent version that shuts down all idiosyncratic shocks and heterogeneity
across agents. The RANK economy provides a useful benchmark because it isolates
the role of price stability concerns. We refer to our baseline setting with heteroge-
neous agents as HANK and the representative agent counterpart as RANK. When we
study Ramsey monetary policy, for each economy we fix Ῡ at the associated optimal
level in the non-stochastic environment. In the RANK economy it is Ῡ = −1/Φ̄.

5.1 Optimal Responses to Markup Shocks

We start by considering the optimal response to a negative innovation in EΦ,t. As this
shock increases the desired markup 1/(Φt − 1), we refer to it as a positive markup
shock. Figure II shows (solid line) that the planner responds to a 0.5 percentage
points increase in markups by cutting the nominal interest rate by 0.3 percentage
points. This response boosts output, inflation and real wages. The optimal policy
response to a markup shock differs significantly from that in the representative agent
model (dashed line).

To understand economic forces behind these results, consider implications of the
shock for price stability and insurance. A negative innovation to EΦ,t increases firms’
desired markups over marginal costs which, ceteris paribus, makes firms want to
increase nominal prices. To reduce the cost of price changes the planner can aim
to lower marginal costs by increasing the nominal interest rate, thereby depressing
aggregate demand and real wages, which reduces marginal costs. Dubbed “leaning
against the wind” by Galí (2015), this response is optimal in representative agent
New Keynesian economies. The interest rate increase that maintains stable prices is
modest (see the dashed line).

Now turn to the insurance considerations. Higher markups increase dividends and
lower the real wage. This benefits agents who own a lot of equities and hurts agents
who mainly rely on labor income. To provide insurance that offsets the differential
impact of the markup shock, the planner can aim to increase the real wage by cutting
the nominal interest rate and boosting aggregate demand.

Thus, the Ramsey planner’s concerns about price stability and insurance have
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Figure II: Optimal monetary response to a markup shock

opposite implications for an optimal monetary response. Figure II shows that quanti-
tatively the planner’s intention to provide insurance swamps the intention to stabilize
prices. To understand why the insurance motive is so strong, think about how the
distribution of gains and losses from the shock depends on asset inequality. The in-
surance motive is least active when firm ownership is widely dispersed among agents
and most active when ownership is very skewed. Data portray the distribution of
stock market wealth as highly unequal, much more than the distribution of labor
earnings. That makes the insurance motive relatively strong.

Figure III shows optimal monetary-fiscal responses to a markup shock. The plan-
ner temporarily increases tax rates and lowers nominal interest rates. This combina-
tion of policies increases the pre-tax wage W and inflation.

Labor taxes allow the planner to completely offset the inflationary consequences
of the markup shock. If taxes are decreased to make the path of 1−τ mirror the path
of the shock, then the after-tax wage (1− τ)W and inflation are both unchanged.
Since this tax response offsets the effect of the shock on inflation, the planner need not
change the nominal interest rate. In representative agent New Keynesian economies
(dashed line) this policy achieves the first best.

In our economy, this fiscal response to an aggregate shock damages insurance pro-
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Figure III: Optimal monetary-fiscal response to a markup shock

vision. When tax rates are lowered, the planner has to decrease transfers in order to
satisfy the government’s budget constraint. That makes average taxes more regres-
sive and amplifies the adverse effect of the markup shock on low-wage households.
To provide insurance, the planner wants to make the tax system more progressive by
increasing transfers funded by higher marginal tax rates. It is optimal to combine
this fiscal policy with loose monetary policy because that offsets the negative effect of
tax rate increases on output. Quantitatively, the insurance considerations dominate
the optimal fiscal response.

In contrast to tax-smoothing prescriptions of Barro (1979) and Aiyagari et al.
(2002), the optimal tax rate increase is short-lived. This is because transitory tax
changes are less distortionary than permanent changes when price are sticky. A
permanent increase in tax rates has no effect on real pre-tax wages W as in the long
run firms set their prices as a constant markup over wages. As a result, a permanent
tax rate change increases the labor distortion (1− τ)W one for one. In contrast,
firms find it suboptimal to adjust prices fully to a transient tax rate increase. Thus, a
transitory tax rate increase raises the pre-tax wage and has little (zero, in a continuous
time limit) effect on the labor distortion.

30



5.2 Optimal Responses to Productivity Shocks

Price stability and insurance provision also shape Ramsey responses to productivity
shocks. A well-known prescription for price stability is to move nominal interest rates
one for one with changes in the “natural rate of interest” – the real interest rate that
would prevail without nominal frictions. Consumers’ Euler equations then ensure that
inflation remains unchanged in response to the shock. The growth rate specification
for productivity shocks in (9b) keeps the natural rate constant providing us with a
clean way to isolate the insurance motive.

Figure IV shows the optimal monetary response to a negative innovation in EΘ,t.
This response is driven purely by insurance concerns: in the RANK economy where
these concerns are absent, the planner optimally keeps interest rates and inflation
unchanged. Several economic forces explain why lower aggregate productivity gener-
ates insurance motives in our model. One is heterogeneity in bond holdings. Incomes
of agents who hold a lot of non-state-contingent bonds suffer less from an adverse
productivity shock than incomes of agents who are in debt. This effect is present
even if wages of all agents are the same. Two features in the data that we target
amplify this differential effect: (i) low wage workers typically have fewer assets, and
(ii) the direct exposures of labor earnings to aggregate productivity shocks are large
for low wage workers, captured by the shape of our loading function f .

To provide insurance, the planner wants to transfer resources from high income to
low income agents. Since debt is nominal, that can be done by lowering ex-post real
returns on debt after a negative EΘ,t shock. A lower return makes the distribution
of losses between savers and borrowers more equal. The planner lowers realized real
returns on the nominal asset by cutting nominal interest rates, thereby increasing
inflation. The policy response is sizable but short lived.16

Figure V shows an optimal monetary-fiscal response to an aggregate productivity
shock. When the planner has access to fiscal policy, increasing transfers funded by
higher labor tax rates provides insurance against the adverse productivity shock.
First, more progressive average taxes redistribute labor income towards low-wage,
low-asset agents. This by itself would mandate a persistent increase in tax rates

16Recall that we follow the usual convention in the New Keynesian literature and assume that
debt matures in one period. With longer debt maturity, the decreases in nominal interest rates and
increases in inflation are smaller but more persistent which allows the planner to lower the cost of
nominal price adjustments.
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Figure IV: Optimal monetary response to a productivity growth rate shock

because the increase in inequality is long lived. But a second force works through
changes in the pre-tax wage. With costly price adjustments, a temporary spike in
marginal taxes rates raises real wages. Together these two effects explain the responses
of optimal tax rates in figure V. Although nominal interest rates move little, that
behavior masks a substantial departure from natural interest rate targeting. The
response of optimal tax rates increases the natural rate in the first period, putting
the nominal rate substantially below it. The difference between nominal and natural
interest rates follows a path that is similar to that in figure IV. This explains the spike
in inflation that provides insurance through lower realized returns on bond holdings.

Now consider the alternative AR(1) specification of productivity shocks in equa-
tion (9a). A negative shock EΘ,t predicts a higher growth rate of Θt+k in the future.
This raises the natural rate, so in order to attain price stability the planner would
want to raise the nominal interest rate as well. This is the main difference from the
growth rate specification of productivity shocks. In particular, once we look at the
difference between nominal and natural rates instead of the nominal interest rate it-
self, counterparts of figures IV and V are very similar in both cases. We report them
in the online appendix where we also explain how to extend the notion of the natural
rate to our HANK economy.
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Figure V: Optimal monetary-fiscal response to a productivity growth rate shock

5.3 Taylor Rules

We explore how well a Taylor rule approximates the Ramsey plan. To this end we
fix tax rates as in sections 5.1 and 5.2 but assume that monetary policy follows the
interest rule specified in equation (30).

Figure VI compares responses of interest rates and inflation under the Ramsey
plan and the Taylor rule. The left panel (black lines) in figure VI shows that the
responses implied by the Taylor rules are too small, too persistent, and, in the case of
markup shocks, are in the opposite direction of the optimal responses. We could have
anticipated that a Taylor rule does a poor job of approximating the Ramsey responses.
In sections 5.1 and 5.2, we emphasized that the main economic force driving optimal
policy is the need to provide insurance; Taylor rules are designed to achieve price
stability. In the right panel (red lines) in figure VI we plot responses to markup
and TFP shocks in the representative agent economy and find that qualitatively, the
interest rate and inflation both behave similarly under Ramsey and Taylor policies.17

17In the RANK economy it easy to improve the fit further by small changes in the coefficients in
the Taylor rule. For example, if we set the coefficient on inflation to 5, the two responses lie almost
perfectly on top of each other. This is not surprising and previous studies, for instance Woodford
(2003) and Galí (2015), also find that Taylor rules approximate the optimal Ramsey policies well in
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Figure VI: Comparing optimal monetary responses to Taylor rule in HANK (black, left
panel) and RANK (red, right panel) models. The solid line is the optimal response and the
dashed line is the response in a competitive equilibrium with it = ī+1.5πt. For TFP shocks
we use the growth rate specification (9b).

The difficulty with a Taylor rule lies not only in its conventional parameterization
but in a restriction that it implicitly imposes on the persistence of interest rates and
inflation. Under a Taylor rule, persistence of nominal interest rates is inherited from
the persistence of exogenous aggregate shocks. Thus, a long-lived markup shock im-
plies long-lived changes in nominal rates and inflation. A motive to provide insurance
in the HANK economy often requires transient and short-lived changes in interest
rate and inflation. These are difficult to implement with standard Taylor rules.

6 Extensions and robustness

We consider several extensions to the section 2 environment.

a class of representative agent settings.
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6.1 Heterogeneity in the marginal propensity to consume

Our baseline specification combines a New Keynesian framework with a standard
Bewley-Aiyagari model of idiosyncratic shocks and imperfect insurance. A well known
limitation of Bewley-Aiyagari models is that they fail to generate sufficient hetero-
geneity in marginal propensities to consume (MPCs).18 That prediction is at odds
with the data. For example, Jappelli and Pistaferri (2014) document large differences
in MPCs across agents and show that MPCs systematically co-vary with wealth.
Recent studies (Auclert (2017), Kaplan et al. (2018)) stress the role of MPC hetero-
geneity in transmitting changes in interest rates. We are interested in implications of
MPC heterogeneity for optimal monetary policy.

We follow Jappelli and Pistaferri (2014) and augment our model with “hand-to-
mouth” agents. These agents can own equities and consume dividends (in addition
to labor income) but cannot trade financial assets over time. Thus, we modify our
baseline set up to allow two dimensions of permanent heterogeneity, equity holding
si and a new variable hi, where hi ∈ {0, 1} indicates whether or not individual i is a
hand-to-mouth type. We assume that the probability of being hand-to-mouth is

Pr(hi = 1|si) = a0 + a1×Percentile (si),

and re-calibrate our model by choosing parameters a0 and a1 to match the MPC
gradient with respect to wealth reported in Jappelli and Pistaferri (2014) in addition
to our calibration targets in section 4. Table III shows Jappelli and Pistaferri (2014)
numbers and the goodness of fit of our calibration.

This approach is in line with Kaplan et al. (2018) who model MPC heterogeneity
using a Bewley-Aiyagari model with costly adjustment between liquid and illiquid
assets. Their baseline calibration makes MPC higher for agents with low liquid wealth,
and about two thirds of agents with zero liquid wealth have positive illiquid wealth.
Our specification captures both features, with high-s hand-to-mouth agents behaving
like wealthy hand-to-mouth agents in Kaplan et al. (2018).

Frictions in trading financial assets segment agents into those who are uncon-
strained and are on their Euler equation and those who are constrained and at strict

18In our baseline model agents trade subject to the natural borrowing limit. The same conclusion
also holds for economies when agents face ad-hoc borrowing limits, except for a small mass of agents
near that limit. Krusell and Smith (1998) refer to this property in such models as “approximate
aggregation.”
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TABLE III: MODEL FIT FOR MPC HETEROGENEITY

Parameters Values Moment Data Model

a0 -0.35 MPC for 10 percentile of Cash on Hand 0.62 0.63

a1 0.75 MPC for 90 percentile of Cash on Hand 0.35 0.33
Notes: The data column is obtained from figure 2 of Jappelli and Pistaferri (2014) who report average MPC out

of transitory income shock by percentiles of cash on hand (CoH) where CoH is defined as the sum of household

disposable income and financial wealth, net of consumer debt. In the model we compute CoH as the sum post - tax

wage earnings, holdings of debt and equities.

Euler inequalities. Ramsey plans are still determined by price stability and insurance
concerns but now they take the different policy responses of these two groups into
account. In a setting with trading frictions, the effectiveness of monetary policy de-
pends on the mechanism through which nominal rates provide insurance. To see this
we compare the responses to markup and TFP shocks.

In the top row of figure VII we see that in response to a positive markup shock
the planner still decreases the nominal interest rate, but not by as much as in the
baseline model. Recall from section 5.1 that, by stimulating aggregate demand, cuts
in interest rates provide insurance after a markup shock. Changes in interest rates
directly affect only agents who are on their Euler equation, and so trading frictions
diminish the ability of monetary policy to influence aggregate demand. In contrast,
the bottom row of figure VII shows that the response of interest rates to a TFP
shock is virtually unaffected by trading frictions. In this case, the planner provides
insurance by lowering real returns on nominal debt. Asset prices are determined only
by a marginal investor. Thus, in spite of trading frictions, monetary policy behaves
similarly to the benchmark case.

Figure VII also shows the importance of transfers in providing insurance when
agents face frictions in trading assets. In our baseline economy agents borrow subject
to natural debt limits, so Ricardian equivalence holds and the timing of transfers
is irrelevant. When some agents are constrained in their abilities to trade financial
assets, transfers become an effective tool for affecting aggregate demand and real
wages. For example, in response to a markup shock the planner increases transfers
to stimulate aggregate demand. This leads to a spike in inflation of about the same
magnitude as in the baseline economy despite a much smaller cut in nominal interest
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Figure VII: Optimal monetary responses with hand-to-mouth agents.

rates. Transfers are cut in response to a TFP shock because lower tax revenues make
it harder for the government to finance its outstanding liabilities.

6.2 Alternative assumptions about welfare criterion and fiscal

instruments

We consider other extensions of our baseline specification where we alter the welfare
criteria; turn off heterogeneous exposures of TFP shocks by setting f = 0; and turn
off nominal rigidities by setting ψ = 0. We summarize main insights from these
extensions here and more details are in the online appendix.

In our baseline specification we assumed that the Ramsey planner is utilitarian
meaning that he puts equal Pareto weights on all agents. This assumption is not
essential for our results. The focus of our analysis has been on the role of monetary
policy in providing insurance against aggregate shocks, and the need for this insurance
is driven by market incompleteness not Pareto weights. To confirm this insight we
tried a range of alternative Pareto weights, for example weights that rationalize the
observed average marginal tax rates or alternative weights that prefer more redistri-
bution. Different choices of Pareto weights have a big influence on the average levels
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of optimal tax rates and transfers but have little effect on how tax rates, transfers,
and nominal interest rates respond to aggregate shocks.

We explored how assumptions about the menu of available fiscal instruments af-
fect conclusions. Some of heterogeneous impacts of recessions in the data are driven
by unemployment. Targeted instruments such as unemployment insurance (UI) can
be more effective than nominal interest rates in helping agents to smooth their con-
sumption. But even the best designed programs are likely to provide only partial
insurance, due, for example, to moral hazard. Modeling these effects realistically
would take us too far from the focus of this paper. One way to estimate a rough
upper bound on the effectiveness of UI programs is to assume that they fully elimi-
nate all heterogeneous wage impacts by setting f = 0. In this case, we find that the
optimal response to a markup shock is essentially unaffected and that the response
to a productivity shock is cut by about 50 percent. Unemployment insurance is not
effective at providing insurance against shocks that affect wage earners and financial
asset holders differently.

We also study the sensitivity of our findings to the size of nominal rigidities.
Monetary policy remains effective even if prices are completely flexible because it still
can influence the nominal price level and real returns on nominal debt. When we
set ψ = 0 we find that inflation responds by 0.5% to markup shocks and by 2.5% to
productivity shocks. These effects are larger than the baseline case where ψ = 20.

The insight that nominal rigidities lower the optimal response of inflation is consistent
with RANK studies (Schmitt-Grohe and Uribe (2004)), but unlike those papers the
volatility of nominal interest rates and inflation remains sizable under conventional
calibrations of nominal rigidities.

7 Concluding Remarks

James Tobin described macroeconomics as a field that explains aggregate quantities
and prices while ignoring distribution effects. Tobin’s characterization describes much
work about real business cycles, asset pricing, Ramsey tax and debt, and New Key-
nesian models. In each of these lines of research, an assumption of complete markets
and/or of a representative consumer allows the analyst to compute aggregate quan-
tities and prices without also determining distributions across agents. This paper
departs from Tobin’s “aggregative economics” by assuming heterogeneous agents and

38



incomplete markets.
Our paper makes two contributions. It develops a way to approximate optimal

plans in economies with heterogeneous agents. Our method can be more broadly ap-
plied to settings that feature incomplete markets, idiosyncratic and aggregate shocks.
Our quantitative application reevaluates lessons for monetary and fiscal policy drawn
from New Keynesian economies. Relative to price stability motives that typically
drive policy prescriptions, heterogeneity adds a quantitatively important insurance
motive. Our findings complement a message in Kaplan and Violante (2018 forth-
coming) that monetary policy is inextricably connected with fiscal policy and about
distributional effects.
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Online Appendix

A Recursive Representation of Ramsey Plan

For completeness and ease of readability, we repeat the planning problem with a full set of

implementability constraints below. Given an initial condition {bi,−1, θi,−1, si}, Λ−1 = 0,

ai,−1 = 0 and the multipliers, the Ramsey allocation solves:

inf sup E0

∞∑
t=0

βt

{∫ [(
c1−νi,t

1− ν
−
n1+γ
i,t

1 + γ

)
+
(
c1−νi,t − c−νi,t (Tt + siDt)− n1+γ

i,t

)
µi,t

−
ai,t−1c

−ν
i,t (1 + Πt)

−1ξi,t

βEt−1

[
c−νi,t (1 + Πt)−1

] + (1− β)c−νi,0 bi,−1µi,0di (31)

+ ΛtC
−ν
t Yt

[
1− Φt

(
1− Wt

αNα−1
t

)]
+ (Λt−1 − Λt)C

−ν
t ψΠt(1 + Πt)

}
,

subject to

c−νi,0 (1−Υ0)W0ϵi,0 = nγi,0

m
−1/ν
i,0 ci,0 = C0∫
ci,0di = C0

C0 + Ḡ = Nα
0 − ψ

2
Π2

0

D0 = Nα
0 −W0N0 −

ψ

2
Π2

0

N0 =

∫
ϵi,0ni,0di

1



and

c−νi,t Wt(1−Υt)ϵi,t = nγi,t (32)

Qt−1 = βmi,t−1Et−1

[
c−νi,t (1 + Πt+1)

−1
]

(33)

m
−1/ν
i,t ci,t = Ct (34)∫
ci,tdi = Ct (35)

Ct + Ḡ = Nα
t − ψ

2
Π2
t (36)

Dt = Nα
t −WtNt −

ψ

2
Π2
t (37)

Nt =

∫
ϵi,tni,tdi (38)

µi,t = µi,t−1 + ξi,t.

for t ≥ 1, where Qt−1 ≡ C−ν
t−1Qt−1, with

ln ϵi,t = lnΘt + ln θi,t + εϵ,i,t

ln θi,t = ρθ ln θi,t−1 + f(θi,t−1)EΘ,t + εθ,i,t

lnΘt = ρΘ lnΘt−1 + (1− ρΘ) ln Θ̄ + EΘ,t
lnΦt = ρΦ lnΦt−1 + (1− ρΦ) ln Φ̄ + EΦ,t,

where the inf is over multipliers {µi,t,Λt}t and the sup is over
{
{ci,t, ni,t, bi,t}i , Ct, Nt, Bt,Wt, Pt, Yt, Dt

}
.

The state for the t ≥ 1 continuation problem is the joint distribution of (mi,0, µi,0, θi,0, si),
Λ0, and aggregate shocks (Θ0,Φ0). For the remainder of this appendix we’ll focus on the
first-order conditions for the continuation problem and how to approximate solutions to
those first-order conditions recursive in the distribution over (mi, µi, θi, si) and (Λ,Θ,Φ).

Once that approximation has been obtained, the solution to the time 0 problem can be
found by solving the time 0 first-order conditions with the knowledge that some variables
will be given by the continuation policy rules. We omit those first-order conditions for
brevity.

Let βtϕi,t, βtρi,t−1, β
tφi,t, β

tχt, β
tΞt, β

tζt,βtκt be the Lagrange multipliers on (32)-(38)
respectively. After taking derivatives, the first-order condition with respect to ai,t−1 com-
bined with µi,t = µi,t−1 + ξi,t imply

µi,t−1 =
Et−1

[
c−νi,t (1 + Πt)

−1µi,t

]
Et−1

[
c−νi,t (1 + Πt)−1

] ,
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and the first-order conditions with respect to mi,t and Qt−1 give∫
ϕi,t = 0.

Due to the timing of the planner’s problem (at time t but before shocks have been real-
ized) policy functions will be a functions of both the previous log of the shocks, Θt−1 =
(lnΘt−1, lnΦt−1); the innovations, Et = (EΘ,t, EΦ,t) and ε = (εϵ, εθ); as well as the individual
states, zt−1 = (mt−1, µt−1, θt−1, s), and the distribution over those states, Ωt−1. The first
order conditions of the planner’s problem can then be written recursively as

0 =ñ(ε,E,Θ, z,Ω,Λ)1+γ + c̃(ε,E,Θ, z,Ω,Λ)−ν(T̃ (E,Θ,Ω,Λ) + sD̃(E,Θ,Ω,Λ)) + ã(Θ,z,Ω,Λ)
p̃(ε,E,Θ, z,Ω,Λ)
βE [p̃(·, ·,Θ,z,Ω,Λ)]

− c(ε,E,Θ, z,Ω,Λ)1−ν − ã(ρΘΘ+ (1− ρΘ)Θ̄+ E, z̃(ε,E,Θ,z,Ω,Λ), Ω̃(E,Θ,Ω,Λ), Λ̃(E,Θ,Ω,Λ)) (39)

0 =c̃(ε,E,Θ, z,Ω,Λ)−νW̃ (E,Θ,Ω,Λ)(1− Υ̃(E,Θ,Ω,Λ))ϵ̃(ε,E,Θ, z,Ω,Λ)− ñ(ε,E,Θ,z,Ω,Λ)γ (40)

0 =m̃(ε,E,Θ, z,Ω,Λ)−1/ν c̃(ε,E,Θ,z,Ω,Λ)− C̃(E,Θ,Ω,Λ) (41)

0 =βE
[
ϱ̃(·, ·ρΘΘ+ (1− ρΘ)Θ̄+ E, z̃(ε,E,Θ, z,Ω,Λ), Ω̃(E,Θ,Ω,Λ), Λ̃(E,Θ,Ω,Λ))

]
+

1

ν
m̃(ε,E,Θ,z,Ω,Λ)−1/ν−1c̃(ε,E,Θ, z,Ω,Λ)φ̃(ε,E,Θ,z,Ω,Λ) (42)

0 =c̃(ε,E,Θ, z,Ω,Λ)−ν + (1− ν)c̃(ε,E,Θ,z,Ω,Λ)−ν µ̃(ε,E,Θ,z,Ω,Λ)− βνm̃(ε,E,Θ, z,Ω,Λ)
ϱ̃(ε,E,Θ, z,Ω,Λ)
c̃(ε,E,Θ,z,Ω,Λ)

− νc̃(ε,E,Θ,z,Ω,Λ)−ν−1
(
T̃ (E,Θ,Ω,Λ) + s(z)D̃(E,Θ,Ω,Λ)

)
µ̃(ε,E,Θ,z,Ω,Λ)

+
νã(Θ,z,Ω,Λ)r̃(ε,E,Θ, z,Ω,Λ)

c̃(ε,E,Θ,z,Ω,Λ)
(µ̃(ε,E,Θ, z,Ω,Λ)− µ)

+ νc̃(ε,E,Θ,z,Ω,Λ)−ν−1W̃ (E,Θ,Ω,Λ)(1− Υ̃(E,Θ,Ω,Λ))ϵ̃(ε,E,Θ,z,Ω,Λ)ϕ̃(ε,E,Θ,z,Ω,Λ)

+ m̃(ε,E,Θ, z,Ω,Λ)−1/ν φ̃(ε,E,Θ,z,Ω,Λ)− χ̃(E,Θ,Ω,Λ) (43)

0 =ñ(ε,E,Θ, z,Ω,Λ)γ − (1 + γ)ñ(ε,E,Θ, z,Ω,Λ)γ µ̃(ε,E,Θ,z,Ω,Λ)

+ γñ(ε,E,Θ, z,Ω,Λ)γ−1ϕ̃(ε,E,Θ,z,Ω,Λ) + ϵ̃(ε,E,Θ,z,Ω,Λ)κ̃(E,Θ,Ω,Λ) (44)

0 =ϱ̃(ε,E,Θ,z,Ω,Λ)− c̃(ε,E,Θ,z,Ω,Λ)−ν(1 + Π̃(E,Θ,Ω,Λ))−1ρ̃(z,Ω,Λ) (45)

0 =p̃(ε,E,Θ,z,Ω,Λ)− c̃(ε,E,Θ, z,Ω,Λ)−ν(1 + Π̃(E,Θ,Ω,Λ))−1 (46)

0 =r̃(ε,E,Θ,z,Ω,Λ)−
p̃(ε,E,Θ,z,Ω,Λ)µ̃(ε,E,Θ,z,Ω,Λ)

βE [p̃(·, ·,Θ,z,Ω,Λ)]
(47)

0 =µ− βE [r̃(·, ·,Θ, z,Ω,Λ)] (48)

0 =Q̃(Θ,Ω,Λ)− βmE
[
p̃(·, ·,Θ, z,Ω,Λ))−1

]
(49)

0 = ln ϵ̃(ε,E,Θ,z,Ω,Λ)− ln θ̃(ε,E,Θ,z,Ω,Λ)− εϵ − ρΘ lnΘ− (1− ρθ) ln Θ̄− EΘ (50)

0 = ln θ̃(ε,E,Θ,z,Ω,Λ)− ρΘ ln θ − f(θ)− εθ

0 =s̃(ε,E,Θ,z,Ω,Λ)− s (51)
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while the aggregate constraints are

0 =

∫ ∫
c̃(ε,E,Θ, z,Ω,Λ)−ν µ̃(ε,E,Θ,z,Ω,Λ)dPr(ε)dΩ(z) (52)

0 =C̃(E,Θ,Ω,Λ)−
∫ ∫

c̃(ε,E,Θ, z,Ω,Λ)dPr(ε)dΩ(z) (53)

0 =Ỹ (E,Θ,Ω,Λ)−
ψ

2
Π̃(E,Θ,Ω,Λ)2 − C̃(E,Θ,Ω,Λ)− Ḡ (54)

0 =

∫ ∫
ϵ̃(ε,E,Θ,z,Ω,Λ)ñ(ε,E,Θ, z,Ω,Λ)dPr(ε)dΩ(z)− Ỹ (E,Θ,Ω,Λ) (55)

0 =Ỹ (E,Θ,Ω,Λ)− W̃ (E,Θ,Ω,Λ)Ñ(E,Θ,Ω,Λ)−
ψ

2
Π̃(E,Θ,Ω,Λ)2 − D̃(E,Θ,Ω,Λ) (56)

0 =C̃(E,Θ,Ω,Λ)−ν Ỹ (E,Θ,Ω,Λ)
([

1− Φ̃(E,Θ,Ω,Λ)(1−
1

α
W̃ (E,Θ,Ω,Λ)Ñ(E,Θ,Ω,Λ)1−α)

])
− ℵ̃(E,Θ,Ω,Λ) + βE

[
ℵ̃(·, ρΘΘ+ (1− ρΘ)Θ̄+ E, Ω̃(E,Θ,Ω,Λ), Λ̃(E,Θ,Ω,Λ))

]
(57)

0 =χ̃(E,Θ,Ω,Λ)− Ξ̃(E,Θ,Ω,Λ) + ν
ℵ̃(E,Θ,Ω,Λ)
C̃(E,Θ,Ω,Λ)

(Λ̃(E,Θ,Ω,Λ)− Λ)

− νC̃(E,Θ,Ω,Λ)−ν−1
(
Ỹ (E,Θ,Ω,Λ)

[
1− Φ̃(E,Θ,Ω,Λ)(1− W̃ (E,Θ,Ω,Λ))

])
Λ̃(E,Θ,Ω,Λ) (58)

0 =(1 + Π̃(E,Θ,Ω,Λ))−1

∫ ∫
ã(Θ, z,Ω,Λ)r̃(ε,E,Θ,z,Ω,Λ)(µ̃(ε,E,Θ, z,Ω,Λ)− µ)

− βϱ̃(ε,E,Θ,z,Ω,Λ)dPr(ε)dΩ(z)− ψΠ̃(E,Θ,Ω,Λ)Ξ̃(E,Θ,Ω,Λ) (59)

− ψΠ̃(E,Θ,Ω,Λ)ζ̃(E,Θ,Ω,Λ)− ψC̃(E,Θ,Ω,Λ)−ν(1 + 2Π̃(E,Θ,Ω,Λ))(Λ̃(E,Θ,Ω,Λ)− Λ) (60)

0 =

∫ ∫
c̃(ε,E,Θ, z,Ω,Λ)−ν ϵ̃(ε,E,Θ,z,Ω,Λ)ϕ̃(ε,E,Θ, z,Ω,Λ)dPr(ε)dΩ(z) (61)

0 =

∫
c̃(ε,E,Θ, z,Ω,Λ)−νsµ̃(ε,E,Θ,z,Ω,Λ)dPr(ε)dΩ− ζ̃(E,Θ,Ω,Λ) (62)

0 =
1

α
Λ̃(E,Θ,Ω,Λ)C̃(E,Θ,Ω,Λ)−νΦ̃(E,Θ,Ω,Λ)− ζ̃(E,Θ,Ω,Λ) (63)

0 =Λ̃(E,Θ,Ω,Λ)C̃(E,Θ,Ω,Λ)
(
αÑ(E,Θ,Ω,Λ)α−1(1− Φ̃(E,Θ,Ω,Λ)) +

1

α
Φ̃(E,Θ,Ω,Λ)W̃ (E,Θ,Ω,Λ)

)
(64)

+ αÑ(E,Θ,Ω,Λ)α−1
(
Ξ̃(E,Θ,Ω,Λ) + ζ̃(E,Θ,Ω,Λ)

)
− W̃ (E,Θ,Ω,Λ)ζ̃(E,Θ,Ω,Λ)− κ̃(E,Θ,Ω,Λ) (65)

0 =ℵ̃(E,Θ,Ω,Λ)− C̃(E,Θ,Ω,Λ)−νψΠ̃(E,Θ,Ω,Λ)(1 + Π̃(E,Θ,Ω,Λ)) (66)

0 =Ỹ (E,Θ,Ω,Λ)− Ñ(E,Θ,Ω,Λ)α (67)

0 =Φ̃(E,Θ,Ω,Λ)− exp(ρΦ lnΦ + (1− ρΦ) ln Φ̄ + EΦ) (68)

0 =

∫
ρ̃(Θ,z,Ω,Λ)dΩ (69)

0 =E
[
T̃ (·,Θ,Ω,Λ)

]
(70)

These are in addition to the implicit restrictions that Q̃, ã and ρ̃ do not depend on period
t shocks. The additional constraint (70) is required because of Ricardian equivalence as
without it there would be multiple solutions to the FOC corresponding to different paths of
government debt.

A.1 Slack Phillips Curve When si = 1

Here we demonstrate the result that when all agents have the same equity ownership, si = 1
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for all i, the Phillips curve, equation (15), does not bind at the optimal allocation and hence
Λt = 0 for all t. Let {ci,t, ni,t} and {Ct,Πt,Wt, Tt,Υt, Dt, Qt, Yt} be the allocation that
maximizes a relaxed planner’s problem without the Phillip’s curve constraint. Define Ŵt

such that (15) is satisfied; D̂t = (1− Ŵt)Yt − ψ
2Π

2
t ; Υ̂t such that (1− Υ̂t)Ŵt = (1−Υt)Wt;

and T̂t such that T̂t + siD̂t = Tt + siDt. It is clear from this definition that all equilib-
rium conditions will then be satisfied with {Ct,Πt, Ŵt, T̂t, Υ̂t, D̂t, Qt, Yt} for the allocation
{ci,t, ni,t}, and therefore this allocation maximizes the full planner’s problem which implies
that the Phillip’s curve is slack.

B Additional Details for Section 3

This section contains the omitted steps and proofs from section 3 in the main text. In
section B.1 we define the F and R functions used in the expansion provided in section B.2.
We prove lemma 1 and lemma 2 of the main text in section B.3. In sections B.4-B.7, we
derive equations (74)-(79) which extend the factorization theorem, theorem 1, to the more
general Ramsey problem, and then exploit this factorization to derive equations (76)-(96)
which give all the derivatives needed for the second-order Taylor expansions of the Ramsey
policies using matrices known from the lower-order expansions and requiring only small
dimensional matrix inversions.

B.1 Deriving functions F and R

Let x̃ =
(
m̃, µ̃, θ̃, s̃, c̃, ñ, ã, ϱ̃, ϕ̃, φ̃, ρ̃, r̃, p̃, ϵ̃

)⊺
denote the household specific variables and

let X̃ =
(
Λ̃, C̃, Ỹ , Π̃, W̃ , D̃, Ñ , ℵ̃, χ̃, Ξ̃, Φ̃, ζ̃, κ̃, T̃ , Υ̃

)⊺
denote the aggregate variables. By

assumption, Λ̃ is contained in X̃ and z̃ is contained in x̃ so there exist projection matrices
P and p that satisfy Λ̃ = PX̃ and z̃ = px̃. Equations (39)-(51) represent the individual
constraints of the problem and can be summarized by the following function which extends
(20) of section 3

0 = F

(
z,Ex̃(·, ·,Θ, z,Ω,Λ), x̃(ε,E ,Θ,z,Ω,Λ),

E
[
x̃(·, ·, ρΘΘ+ (1− ρΘ)Θ̄+ E , z̃(ε,E,Θ, z,Ω,Λ), Ω̃(Θ,z,Ω,Λ), Λ̃(Θ, z,Ω,Λ)

]
, (71)

X̃(Θ,Ω,Λ), ε, E ,Θ

)

and must hold for all z in the support of Ω. Equations (52)-(70) capture the aggregate
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constraints which must hold across all agents and can be defined by the following function
which extends (21) of section 319

0 =

∫
R

(
z, x̃(ε,Θ, z,Ω,Λ), X̃(Θ,Ω,Λ),

E[X̃(·, ρΘΘ+ (1− ρΘ)Θ̄+ E, Ω̃(Θ,Ω,Λ), Λ̃(Θ,Ω,Λ))], ε,Θ,Λ
)
dPr(ε)dΩ.

(72)

The law of motion for Ω̃ is given by

Ω̃ (E,Θ,Ω,Λ) (y) =
∫
ι (z̃ (ε,E ,Θ, z,Ω,Λ) ≤ y) dPr (ε) dΩ ∀y, (73)

where ι (z̃ (ε,E ,Θ, z,Ω,Λ) ≤ y) is 1 iff all elements of z̃ (ε,E,Θ, z,Ω) are less than all
elements of y and zero otherwise.

B.2 Setting up the expansions

Section 3 presented two approaches to approximating x̃ and X̃: expanding around the
deterministic transition dynamics {Θt,Λt} and expanding around the non-stochastic steady
state (Θ̄, Λ̄). We first present how to expand around the non-stochastic steady state (Θ̄, Λ̄)
in sections B.2-B.6. In section B.7 we describe the full expansion along the transition path.
To expand around (Θ̄, Λ̄), we consider a positive scalar σ that scales all shocks, deviations
of Θ and Λ from their respective steady states Θ̄ and Λ̄(Ω), and ρθ(σ) = 1 − σρ. We let
x̃(σε, σE, σ(Θ− Θ̄) + Θ̄, z,Ω, σ(Λ− Λ̄(Ω)) + Λ̄;σ) and X̃(σE , σ(Θ− Θ̄) + Θ̄, z,Ω, σ(Λ−
Λ̄(Ω));σ) denote the policy rules with scaling parameters σ, and approximate these policies
with a Taylor expansion with respect to σ. For example, a first-order Taylor expansion would
be of the form

x̃(ε,Θ, z,Ω,Λ) = x̄(z,Ω) +
(
x̄ε(z,Ω)ε+ x̄E(z,Ω)E + x̄Θ(z,Ω)(Θ− Θ̄)

)
σ

+
(
x̄Λ(z,Ω)(Λ− Λ̄(Ω)) + x̄σ

)
σ +O(σ2)

19The R presented here nests that of section 3 with two main differences. The first is
the inclusion of expectations of future aggregate variables. The second is that we choose to
integrate over R rather than over x. Both choices are without loss of generality but they
allow for equations (39)- (51) and (52)-(70) representing the Ramsey plan to be expressed
in a more condensed form.
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and

X̃(Θ,Ω,Λ) = X̄(Ω) +
(
X̄E(Ω)E + X̄Θ(Ω)(Θ− Θ̄) + X̄Λ(Ω)(Λ− Λ̄(Ω)) + X̄σ

)
σ +O(σ2),

while second-order expansions can be defined analogously.

B.3 Proof of Lemma 1 and Lemma 2

We begin by showing that when σ = 0, z̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = z and hence that Ω̃(0, Θ̄,Ω, Λ̄; 0) = Ω.

From (47) it is clear that r̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = µ
β and thus equation (48) implies

µ̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = µ.

In absence of shocks, we conclude from equations (41) and (49) that

c̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = m̃(0, 0, Θ̄, z,Ω, Λ̄; 0)1/νC̃(0, Θ̄,Ω, Λ̄; 0)

and

c̃(0, 0, Θ̄,z,Ω, Λ̄; 0) = m1/ν

(
β

Q̃(Θ̄,Ω, Λ̄; 0)(1 + Π(0, Θ̄,Ω, Λ̄; 0))

)1/ν

As
∫
m

1
ν dΩ(z) = 1, this implies

(
β

Q̃(Θ̄,Ω,Λ̄;0)(1+Π(0,Θ̄,Ω,Λ̄;0))

)1/ν
= C̃(0, Θ̄,Ω, Λ̄; 0) and hence

c̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = m
1
ν C̃(0, Θ̄,Ω, Λ̄; 0).

We, therefore, conclude that m̃(0, 0, Θ̄,z,Ω, Λ̄; 0) = m.

By assumption s̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = s and, as ρθ → 1 as σ → 0, θ̃(0, 0, 0,z,Ω, Λ̄; 0) = θ.
All combined, we obtain z̃(0, 0, Θ̄, z,Ω, Λ̄; 0) = z and therefore Ω̃(0, Θ̄,Ω, Λ̄; 0) = Ω. Note
that we obtained Ω̃(0, Θ̄,Ω, Λ̄; 0) = Ω by exploiting that, in absence of risk, the expectations
in (41) and (49) drop out. This would hold apply along any deterministic transition path
for (Λ,Θ) and thus z̃(0, 0,Θ, z,Ω,Λ; 0) = z and Ω̃(0,Θ,Ω,Λ; 0) = Ω for any (Λ,Θ). This
proves the statement of lemma 2 and, therefore, also of lemma 1 as it is a special case of
lemma 2.

B.4 Frechet Derivatives: ∂x̄(z), ∂X̄

Differentiate F and R with respect to z to obtain

(Fx−(z) + Fx(z) + Fx+(z))x̄z(z) + Fz(z) = 0,
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where we exploited z̄z = I. This yields x̄z(z) = (Fx−(z) + Fx(z) + Fx+(z))
−1Fz(z).

We begin by solving for the derivatives w.r.t Λ. Exploiting z̃(0, 0, 0, z,Ω,Λ; 0) = z and
Ω̃(0, 0,Ω,Λ; 0) = Ω and hence z̄Λ = 0 and Ω̄Λ = 0,

Fx−(z)x̄Λ(z) + Fx(z)x̄Λ(z) + Fx+(z)
(
x̄Λ(z)Λ̄Λ

)
+ FX(z)X̄Λ = 0

and ∫
Rx(z)x̄Λ(z) + RX(z)X̄Λ + RX+(z)X̄ΛΛ̄Λ + RΛ(z)dΩ(z) = 0.

In order to proceed, we need to find the derivative Λ̄Λ. This requires solving a nonlinear
equation but still involves only operations involving small matrices. First note that

x̄Λ(z) = −(Fx−(z) + Fx(z) + Λ̄ΛFx+(z))
−1FX(z)X̄Λ

Let C(z) = −(Fx−(z) + Fx(z) + Λ̄ΛFx+(z))
−1FX(z), then

X̄Λ = −
(∫ [

Rx(z)C(z) + RX(z) + Λ̄ΛRX+(z)
]
dΩ(z)

)−1(∫
RΛ(z)dΩ(z)

)
.

Therefore, Λ̄Λ must solve

Λ̄Λ = −P

(∫ [
Rx(z)C(z) + RX(z) + Λ̄ΛRX+(z)

]
dΩ(z)

)−1(∫
RΛ(z)dΩ(z)

)
.

This can be found easily with a 1-dimensional root solver as all the inversions involve small
matrices.

The Frechet derivative w.r.t Ω is computed as follows:

(Fx−(z) + Fx(z) + Fx+(z)) ∂x̄(z) + Fx+(z)x̄Λ(z)P∂X̄ + FX(z)∂X̄ = 0

which gives

∂x̄(z) = −(Fx−(z) + Fx(z) + Fx+(z))
−1 (Fx+(z)x̄Λ(z)P+ FX(z)) ∂X̄ ≡ C(z)∂X̄. (74)

To solve for ∂X̄, we differentiate R in the direction ∆, with density δ, to obtain

0 = lim
α→0

1

α

[∫
R(z, x̄(z,Ω+ α∆), X̄(Ω + α∆))(ω(z) + αδ(z))dz −

∫
R(z)ω(z)dz

]
=

∫
R(z)δ(z)dz +

∫ (
Rx(z)∂x̄(z) ·∆+ RX+(z)

(
(∂X̄ ·∆) + X̄ΛP(∂X̄ ·∆)

)
+ RX(z)∂X̄ ·∆

)
ω(z)dz

8



where R(z) is defined by R(z) = R(z, x̄(z), X̄, X̄, 0, Λ̄, Θ̄). Substituting for ∂x̄(z) =

C(z)∂X̄, we get

∂X̄ ·∆ = −
(∫ (

Rx(z)C(z) + RX+(z)(I + X̄ΛP) + RX(z)
)
dΩ(z)

)−1 ∫
R(z)d∆(z)

≡ D−1

∫
R(z)d∆(z). (75)

B.5 First-Order Terms

Next we differentiate both F and R with respect to σ and use the method of undetermined
coefficients to group the terms that multiply ε, E and Θ and set each equal to zero. For ε,
this yields

Fx(z)x̄ε(z) + Fx+(z)x̄z(z)px̄ε(z) + Fε(z) = 0

or
x̄ε(z) = − (Fx(z) + Fx+(z)x̄z(z)p)

−1 Fε(z) ≡ E(z)−1G(z). (76)

For Θ, we find that (after noting imposing Ω̄Θ = 0 and z̄Θ = 0)

Fx−(z)x̄Θ(z) + Fx(z)x̄Θ(z) + Fx+(z)
(
x̄Θ(z)ρΘ + x̄Λ(z)PX̄Θ

)
+ FX(z)X̄Θ + FΘ(z) = 0.

This yields a linear equation in x̄Θ and X̄Θ which we can solve for x̄Θ.20 Plugging in for
the linear relationship between x̄Θ and X̄Θ in∫

Rx(z)x̄Θ(z) + RX(z)X̄Θ + RX+(z)X̄ΘρΘ + RX+(z)X̄ΛPX̄Θ + RΘ(z)dΩ(z) = 0.

yields a linear equation for X̄Θ.

Finally, for E we find

Fx(z)x̄E(z)+Fx+(z)
(
x̄Θ(z) + x̄z(z)px̄E(z) + ∂x̄(z) · Ω̄E + x̄Λ(z)PX̄E

)
+FX(z)X̄E+FE(z) = 0

and∫
Rx(z)x̄E(z) + RX(z)X̄E + RX+(z)

(
X̄Θ + ∂X̄ · Ω̄E + X̄ΛPX̄E

)
+ RE(z)dΩ(z) = 0.

20Easiest to exploit ρΘ =

(
ρΘ 0
0 ρΦ

)
and solve for each column of x̄Θ separately.
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Substituting for ∂x̄, we obtain and defining X̄ ′
E = ∂X̄ · Ω̄E

Fx(z)x̄E(z)+Fx+(z)
(
x̄Θ(z) + x̄z(z)px̄E(z) + C(z)X̄ ′

E + x̄ΛPX̄E
)
+FX(z)X̄E+FE(z) = 0,

or
H(z)x̄E(z) = I(z)

[
I X̄E X̄ ′

E

]⊺
(77)

Solving for these derivatives first requires determining Ω̄E . Differentiating equation (73)
with respect to E and letting zi represent the ith element of z yields

Ω̃E(E ,Θ,Ω,Λ)(y) = −
∫ ∑

i

δ(z̃i (ε,E ,Θ,z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ,z,Ω,Λ) ≤ yj

)
× z̃iE (ε,E ,Θ, z,Ω) dPr(ε)dΩ(z)

which evaluated at σ = 0 gives

Ω̄E(y) = −
∫ ∑

i

δ(zi−yi)
∏
j ̸=i

ι(zj ≤ yj)z̄iE(z)dΩ(z) = −
∑
i

∫
δ(zi−yi)

∏
j ̸=i

ι(zj ≤ yj)z̄iE(z)dΩ(z).

The density of Ω̄E is given by ω̄E(y) =
∂nz

∂y1∂y2···∂ynz Ω̄E(y) so

ω̄E(y) = −
∑
i

∂

∂yi

∫ ∏
j

δ(zj − yj)z̄iE(z)dΩ(z) = −
∑
i

∂

∂yi
(
z̄iE(y)ω(y)

)
.

Plugging in for the definition of X̄ ′
E we find

X̄ ′
E = −D−1

∫
R(z)

∑
i

∂

∂zi
(
z̄iE(z)ω(z)

)
dz

= D−1

∫ ∑
i

(
∂

∂zi
R(z)

)
z̄iE(z)ω(z)dz

= D−1

∫ ∑
i

(Rzi(z) + Rx(z)x̄zi(z)) z̄iEdΩ(z)

= D−1

∫
(Rz(z) + Rx(z)x̄z(z)) px̄E(z)dΩ(z)

≡
∫

A(z)x̄E(z)dΩ(z) (78)

where we arrive at the second equality through integration by parts. This implies

∂x̄(z) · Ω̄E = C(z)

∫
A(z)x̄E(z)dΩ(z). (79)
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Substituting for x̄E(z) using equation (77) in (78) plus∫
Rx(z)x̄E(z) + RX(z)X̄E + RX+

(
X̄Θ + X̄ ′

E + X̄ΛPX̄E
)
+ RE(z)dΩ(z) = 0

yields a linear system
K ·
[
X̄E X̄ ′

E

]⊺
= J (80)

where K and J are matrices with dimensions given by the number of aggregate variables or
number of aggregate shocks, both of which are small relative to number of agents.

Finally our last term, the derivative w.r.t σ. Since we have the AR(1) parameter of
idiosyncratic shock ρθ scale with σ, Fσ is non-zero.

Fx−(z)x̄σ(z) + Fx(z)x̄σ(z) + Fx+(z)
(
x̄σ(z) + x̄z(z)px̄σ(z) + ∂x̄(z) · Ω̄σ + x̄Λ(z)PX̄σ

)
+ FX(z)X̄σ + Fσ(z) = 0

and21 ∫
Rx(z)x̄σ(z) + RX(z)X̄σ + RX+(z)

(
X̄σ + ∂X̄ · Ω̄σ + X̄ΛPX̄σ

)
dΩ(z) = 0.

Substituting for ∂x̄, we obtain and defining X̄ ′
σ = ∂X̄ · Ω̄σ

Fx−(z)x̄σ(z) + Fx(z)x̄σ(z) + Fx+(z)
(
x̄σ(z) + x̄z(z)px̄σ(z) + C(z)X̄ ′

σ + x̄Λ(z)PX̄σ

)
+ FX(z)X̄σ + Fσ(z) = 0,

or
L(z)x̄σ(z) = M(z)

[
I X̄σ X̄ ′

σ

]⊺
. (81)

Differentiating with respect to σ yields

Ω̃σ(E ,Θ,Ω,Λ)(y) =−
∫ ∑

i

δ(z̃i (ε,E ,Θ,z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ,z,Ω,Λ) ≤ yj

)
×
(
z̃iε (ε,E ,Θ, z,Ω) ε+ z̃iσ (ε,E ,Θ, z,Ω)

)
dPr(ε)dΩ(z)

which evaluated at σ = 0 gives (as ε is mean 0)

Ω̄σ(y) = −
∑
i

∫
δ(zi − yi)

∏
j ̸=i

ι(zj ≤ yj)z̄iσ(z)dΩ(z).

21Note, we have dropped all the expectations as they are zero.

11



and
ω̄E(y) = −

∑
i

∂

∂yi
(
z̄iσ(y)ω(y)

)
.

Plugging in for the definition of X̄ ′
σ we find

X̄ ′
σ = D−1

∫
(Rz(z) + Rx(z)x̄z(z)) px̄σ(z)dΩ(z) (82)

Substituting for x̄σ(z) in (82) and∫
Rx(z)x̄σ(z) + RX(z)X̄σ + RX+

(
X̄σ + X̄ ′

σ + X̄ΛPX̄σ

)
+ Rσ(z)dΩ(z) = 0

yields a linear system
N ·
[
X̄σ X̄ ′

σ

]⊺
= O (83)

which is composed of small matrices.

B.6 Second-Order Terms

Here we describe how to compute all the second-order terms required for the Taylor expan-
sion. To save on space, when obvious we drop dependence on z.

B.6.1 Derivatives w.r.t. states

We start by differentiating with respect to the states z and Ω. The term ∂x̄z(z) can be
computed by differentiating F w.r.t. z and then taking the Frechet derivative with respect
to Ω to find

0 =Fx−∂x̄z + Fx∂x̄z + Fx+
(
∂x̄z + x̄zΛ∂Λ̄

)
+ Fx−X ·

(
x̄z, ∂X̄

)
+ FxX ·

(
x̄z, ∂X̄

)
+ Fx+X ·

(
x̄z, ∂X̄

)
+ Fzx− · (I, ∂x̄) + Fzx · (I, ∂x̄) + FzX ·

(
I, ∂X̄

)
+ Fzx+ ·

(
I, ∂x̄+

)
+ Fx−x− · (x̄z, ∂x̄) + Fx−x · (x̄z, ∂x̄) + Fx−X ·

(
x̄z, ∂X̄

)
+ Fx−x+ ·

(
x̄z, ∂x̄

+
)

+ Fxx− · (x̄z, ∂x̄) + Fxx · (x̄z, ∂x̄) + FxX ·
(
x̄z, ∂X̄

)
+ Fxx+ ·

(
x̄z, ∂x̄

+
)

+ Fx+x− · (x̄z, ∂x̄) + Fx+x · (x̄z, ∂x̄) + Fx+X ·
(
x̄z, ∂X̄

)
+ Fx+x+ ·

(
x̄z, ∂x̄

+
)

where I represents the identity matrix and we use a · (b, c) to denote a bilinear map22 and
∂x̄+(z) ≡ ∂x̄(z) + x̄Λ(z)∂Λ̄ . This linear system is easily solved to give

∂x̄z(z) = Q(z) ·
(
I, ∂X̄

)
(84)

22Specifically, if a is a n1 ×n2 ×n3 tensor, b is a n2 ×n4 matrix and c is a n3 ×n5 matrix
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where Q(z) is nx×nz×nX . The derivatives of x̄zz(z), x̄zΛ(z) and x̄zΘ(z) are equally easy
as they do not effect aggregates.

Next, twice differentiating with respect to Λ (again with the knowledge that z̄ΛΛ = 0

and Ω̄ΛΛ = 0) implies

0 =Fx−x̄ΛΛ + Fxx̄ΛΛ + FXX̄ΛΛ + Fx+
(
x̄ΛPX̄ΛΛ + x̄ΛΛΛ̄

2
Λ

)
+ Fx−x− · (x̄Λ,x̄Λ) + 2Fx−x · (x̄Λ, x̄Λ) + 2Fx−X(x̄Λ, X̄Λ) + 2Fx−x+ · (x̄Λ, x̄ΛΛ̄Λ) + 2Fx−Λx̄Λ

+ Fxx · (x̄Λ, x̄Λ) + 2FxX · (x̄Λ, X̄Λ) + 2Fxx+ · (x̄Λ, x̄ΛΛ̄Λ) + 2FxΛx̄Λ + FXX · (X̄Λ, X̄Λ)

+ 2FXx+ · (X̄Λ, x̄ΛΛ̄Λ) + 2FXΛX̄Λ + Fx+x+ · (x̄ΛΛ̄Λ, x̄ΛΛ̄Λ) + 2Fx+Λx̄ΛΛ̄Λ + FΛΛ

and

0 =

∫ (
Rx(z)x̄ΛΛ(z) + RX(z)X̄ΛΛ + RX+(z)

(
X̄ΛPX̄ΛΛ + X̄ΛΛΛ̄

2
Λ

)
+ Rxx(z) · (x̄Λ(z), x̄Λ(z))

+ 2RxX(z) ·
(
x̄Λ(z), X̄Λ

)
+ 2RxX+(z) ·

(
x̄Λ(z), X̄ΛΛ̄Λ

)
+ 2RxΛ(z)x̄Λ(z)

+ RXX(z) ·
(
X̄Λ, X̄Λ

)
+ 2RXX+(z) ·

(
X̄Λ, X̄ΛΛ̄Λ

)
+ 2RXΛ(z)X̄Λ

+ RX+X+ ·
(
X̄ΛΛ̄Λ, X̄ΛΛ̄Λ

)
+ 2RX+ΛX̄ΛΛ̄Λ + RΛΛ(z)

)
dΩ(z)

From the first set of equations, we obtain

S(z)x̄ΛΛ(z) = T(z)
[
I X̄ΛΛ

]
(85)

which we can then plug into the R equation to yield

U(z)X̄ΛΛ = V(z). (86)

A identical approach can be used to obtain expressions for x̄ΘΘ(z), x̄ΘΛ(z), X̄ΘΘ and X̄ΘΛ

which take the same form.
Next ∂x̄Λ(z) is computed by differentiating F and R w.r.t Λ and then taking the Frechet

then d = a · (b, c) is n1 × n4 × n5 tensor defined by

dilm =
∑
j,k

aijkbjlckm.

This definition generalizes to when a, b, or c is infinite dimensional, such as with ∂x̄z.
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derivative with respect to Ω to find (exploiting ∂Ω̄Λ = 0)

0 =Fx−∂x̄Λ + Fx∂x̄Λ + FX∂X̄Λ + Fx+
(
x̄ΛP∂X̄Λ + ∂x̄ΛΛ̄Λ + x̄ΛΛ ·

(
Λ̄Λ, ∂Λ̄

))
+ Fx−x− · (x̄Λ,∂x̄) + Fx−x · (x̄Λ, ∂x̄) + Fx−X(x̄Λ, ∂X̄) + Fx−x+ · (x̄Λ, ∂x̄

+) + Fxx− · (x̄Λ, ∂x̄)

+ Fxx · (x̄Λ, ∂x̄) + FxX · (x̄Λ, ∂X̄) + Fxx+ · (x̄Λ, ∂x̄
+) + FXx− · (X̄Λ, ∂x̄) + FXx · (X̄Λ, ∂x̄)

+ FXx+ · (X̄Λ, ∂x̄
+) + Fx+x− · (x̄ΛΛ̄Λ, ∂x̄) + Fx+x · (x̄ΛΛ̄Λ, ∂x̄) + Fx+X · (x̄ΛΛ̄Λ, ∂X̄)

+ Fx+x+ · (x̄ΛΛ̄Λ, ∂x̄
+)

and

0 =

∫ (
RΛ(z) + Rx(z)x̄Λ(z) + RX(z)X̄Λ + RX+(z)X̄ΛΛ̄Λ

)
δ(z)dz

+

∫ (
Rx(z)∂x̄Λ(z) ·∆+ RX+(z)

(
X̄ΛP∂X̄Λ ·∆+ ∂X̄Λ ·∆Λ̄Λ + X̄ΛΛ ·

(
Λ̄Λ, ∂Λ̄ ·∆

))
+ RX(z)∂X̄Λ ·∆+ Rxx(z) · (x̄Λ(z), ∂x̄(z) ·∆) + RxX(z) · (x̄Λ(z), ∂X̄ ·∆)

+ RxX+(z) · (x̄Λ(z), ∂X̄
+ ·∆) + RXx(z) · (X̄Λ, ∂x̄(z) ·∆) + RXX(z) · (X̄Λ, ∂X̄ ·∆)

+ RXX+(z) · (X̄Λ, ∂X̄
+ ·∆) + RX+x(X̄ΛΛ̄Λ, ∂x̄(z) ·∆) + RX+X · (X̄ΛΛ̄Λ, ∂X̄ ·∆)

+ RX+X+ · (X̄ΛΛ̄Λ, ∂X̄
+ ·∆) + RΛx(z)∂x̄(z) ·∆+ RΛX(z)∂X̄ ·∆+ RΛX+(z)∂X̄

+ ·∆

)
dΩ(z),

where ∂X̄+ ≡ ∂X̄ + X̄Λ∂Λ̄. From F equations we immediately obtain

W(z)∂x̄Λ(z) = X(z)
[
∂X̄Λ ∂X̄

]⊺
(87)

which can be plugged into the equations from R to obtain

Y∂X̄Λ ·∆ = Z∂X̄ ·∆+

∫ (
RΛ(z) + Rx(z)x̄Λ(z) + RX(z)X̄Λ + RX+(z)X̄ΛΛ̄Λ

)
δ(z)dz.

(88)
A similar approach can be used to obtain expressions for ∂x̄Θ(z) and ∂X̄Θ which take the
same form.

14



Finally the second-order Frechet derivative of F in the directions of ∆1 and ∆2 yields

0 =Fx−∂
2x̄ · (∆1,∆2) + Fx∂

2x̄ · (∆1,∆2) + Fx+∂
2x̄ · (∆1,∆2) + FX∂

2X̄ · (∆1,∆2)

+ Fx+
(
x̄ΛP∂

2X̄ · (∆1,∆2) + x̄ΛΛ ·
(
∂X̄ ·∆1, ∂X̄ ·∆2

)
+ (∂x̄Λ ·∆1)

(
∂Λ̄ ·∆2

)
+ (∂x̄Λ ·∆2)

(
∂Λ̄ ·∆1

))
+ Fx−x− · (∂x̄ ·∆1, ∂x̄ ·∆2) + Fx−x · (∂x̄ ·∆1, ∂x̄ ·∆2) + Fx−x+ ·

(
∂x̄ ·∆1, ∂x̄

+ ·∆2

)
+ Fx−X ·

(
∂x̄ ·∆1, ∂X̄ ·∆2

)
+ Fxx− · (∂x̄ ·∆1, ∂x̄ ·∆2) + Fxx · (∂x̄ ·∆1, ∂x̄ ·∆2)

+ Fxx+ ·
(
∂x̄ ·∆1, ∂x̄

+ ·∆2

)
+ FxX ·

(
∂x̄ ·∆1, ∂X̄ ·∆2

)
+ Fx+x− ·

(
∂x̄+ ·∆1, ∂x̄ ·∆2

)
+ Fx+x ·

(
∂x̄+ ·∆1, ∂x̄ ·∆2

)
+ Fx+x+ ·

(
∂x̄+ ·∆1, ∂x̄

+ ·∆2

)
+ Fx+X ·

(
∂x̄+ ·∆1, ∂X̄ ·∆2

)
+ FXx− ·

(
∂X̄ ·∆1, ∂x̄ ·∆2

)
+ FXx ·

(
∂X̄ ·∆1, ∂x̄ ·∆2

)
+ FXx+ ·

(
∂X̄ ·∆1, ∂x̄

+ ·∆2

)
+ FXX ·

(
∂X̄ ·∆1, ∂X̄ ·∆2

)
Substituting for ∂x̄(z) = C(z)∂X̄ and ∂x̄Λ(z), and then solving for ∂2x̄ gives

∂2x̄(z) · (∆1,∆2) =C(z)∂2X̄ · (∆1,∆2) + AA1(z) ·
(
∂X̄ ·∆1, ∂X̄ ·∆2

)
+ AA2(z)

(
∂X̄Λ ·∆1∂Λ̄ ·∆2 + ∂X̄Λ ·∆2∂Λ̄ ·∆1

)
. (89)

To find ∂2X̄ we differentiate R w.r.t Ω in the direction ∆1 and then ∆2 to find

0 =

∫ (
Rx(z)∂

2x̄(z) · (∆1,∆2) + RX(z)∂2X̄ · (∆1,∆2) + RX+(z)∂
2X̄ · (∆1,∆2)

+ RX+(z)
(
X̄ΛΛ(∂Λ̄ ·∆1)(∂Λ̄ ·∆2) +

(
∂X̄Λ ·∆1

)
∂Λ̄ ·∆2 +

(
∂X̄Λ ·∆2

)
∂Λ̄ ·∆1

)
+ Rxx(z) · (∂x̄(z) ·∆1, ∂x̄(z) ·∆2) + RxX(z) ·

(
∂x̄(z) ·∆1, ∂X̄ ·∆2

)
+ RxX+(z) ·

(
∂x̄(z) ·∆1, ∂X̄

+ ·∆2

)
+ RXx(z) ·

(
∂X̄ ·∆1, ∂x̄(z) ·∆2

)
+ RXX(z) ·

(
∂X̄ ·∆1, ∂X̄ ·∆2

)
+ RXX+(z) ·

(
∂X̄ ·∆1, ∂X̄

+ ·∆2

)
+ RX+x(z) ·

(
∂X̄+ ·∆1, ∂x̄(z) ·∆2

)
+ RX+X(z) ·

(
∂X̄+ ·∆1, ∂X̄ ·∆2

)
+ RX+X+(z) ·

(
∂X̄+ ·∆1, ∂X̄

+ ·∆2

))
dΩ(z)

+

∫ (
Rx(z)∂x̄(z) ·∆1 + RX(z)∂X̄ ·∆1 + RX+(z)∂X̄

+ ·∆1

)
d∆2(z)

+

∫ (
Rx(z)∂x̄(z) ·∆2 + RX(z)∂X̄ ·∆2 + RX+(z)∂X̄

+ ·∆2

)
d∆1(z)
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A bit of rearranging and substituting for ∂2x̄ yields

D∂2X̄ · (∆1,∆2) =

∫ (
Rx(z)∂x̄(z) ·∆1 + RX(z)∂X̄ ·∆1 + RX+(z)∂X̄

+ ·∆1

)
d∆2(z)

+

∫ (
Rx(z)∂x̄(z) ·∆2 + RX(z)∂X̄ ·∆2 + RX+(z)∂X̄

+ ·∆2

)
d∆1(z)

+ BB ·
(
∂X̄ ·∆1, ∂X̄ ·∆2

)
+ CC

(
∂X̄Λ ·∆2

)
∂Λ̄ ·∆1 + CC

(
∂X̄Λ ·∆1

)
∂Λ̄ ·∆2.

(90)

B.6.2 Derivatives w.r.t. shocks

Next we proceed by taking derivatives w.r.t. σ and then use the method of undeter-
mined coefficients to find the derivatives associated with each pair of shocks. Solving for
x̄εε, x̄εΘ, x̄εΛ, x̄εσ and x̄εE are trivial as these interactions do not effect aggregates so we
omit those formulas them for brevity.

For x̄EΛ we see (after defining x̄+
E = x̄Θ + x̄zz̄E + ∂x̄ · Ω̄E + x̄ΛΛ̄E)

0 =Fxx̄EΛ + FXX̄EΛ + Fx+
(
x̄ΘΛΛ̄Λ + x̄zΛx̄EΛ̄Λ + ∂x̄Λ · Ω̄EΛ̄Λ + x̄zpx̄EΛ + ∂x̄ · Ω̄EΛ

)
+ Fx+x̄ΛPX̄EΛ + Fxx− · (x̄E , x̄Λ) + Fxx · (x̄E , x̄Λ) + FxX · (x̄E , X̄Λ) + Fxx+ · (x̄E , x̄ΛΛ̄Λ) + FxΛx̄E

+ FXx− · (X̄E , x̄Λ) + FXx · (X̄E , x̄Λ) + FXx+ · (X̄E , x̄ΛΛ̄Λ) + FXΛX̄Λ + Fx+x− · (x̄+
E , x̄Λ)

+ Fx+x · (x̄+
E , x̄Λ) + Fx+X · (x̄+

E , X̄Λ) + Fx+x+ · (x̄+
E , x̄ΛΛ̄Λ) + Fx+Λ(x̄

+
E )

+ FEx−x̄Λ + FExx̄Λ + FEXX̄Λ + FEx+x̄ΛΛ̄Λ + FEΛ

Most of these terms are already known, but there are a few that are new and need to be
computed: ∂x̄ · Ω̄EΛ and ∂x̄Λ · Ω̄E . For the first, ∂x̄ · Ω̄EΛ = C(z)∂X̄ · Ω̄EΛ ≡ C(z)X̄ ′

EΛ. For
the second, we have

∂x̄Λ(z) · Ω̄E = Y(z)−1z1(z)∂X̄Λ · Ω̄E + Y(z)−1z2(z)X
′
E

where

∂X̄Λ · Ω̄E = Y−1ZX ′
E + Y−1

∫ (
RΛ(z) + Rx(z)x̄Λ(z) + RX(z)X̄Λ + RX+(z)X̄ΛΛ̄Λ

)
ω̄E(z)dz

= Y−1ZX ′
E + Y−1

∫ (
∂

∂z
RΛ(z) +

∂

∂z
RΛ(z)x̄Θ(z) + RΛ(z)x̄Θz(z)

+
∂

∂z
RX(z)X̄Λ +

d

dz
RX+(z)X̄ΛΛ̄Λz̄E(z)

)
ω(z)dz
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where the last term is easily computable from known terms.23 Thus, we can show that the
derivative x̄EΛ solves the following system of equations

DD(z)x̄EΛ = EE(z)
[
I X̄EΛ X̄ ′

EΛ

]
. (91)

To determine X̄EΛ and X̄ ′
EΛ, proceed in the same manner as the first-order terms. Recall

we had,

Ω̃E(E ,Θ,Ω,Λ)(y) = −
∫ ∑

i

δ(z̃i (ε,E ,Θ,z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ,z,Ω,Λ) ≤ yj

)
× z̃iE (ε,E ,Θ, z,Ω) dPr(ε)dΩ(z),

and thus

Ω̃EΛ(E,Θ,Ω,Λ)(y) =−
∫ ∑

i

δ(z̃i (ε,E ,Θ, z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ, z,Ω,Λ) ≤ yj

)
× z̃iEΛ (ε,E ,Θ,z,Ω,Λ) dPr(ε)dΩ(z)

−
∫ (∑

i

δ′(z̃i (ε,E ,Θ, z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ, z,Ω,Λ) ≤ yj

)
× z̃iE (ε,E,Θ, z,Ω,Λ) z̃iΛ (ε,E,Θ, z,Ω,Λ)

)
dPr (ε) dΩ(z)

+

∫ (∑
i

∑
j ̸=i

δ(z̃i (ε,E ,Θ, z,Ω,Λ)− yi)δ(z̃j (ε,E ,Θ, z,Ω,Λ)− yj)

∏
k ̸=i,j

ι
(
z̃k (ε,E ,Θ, z,Ω,Λ) ≤ yk

)
z̃iE (ε,E ,Θ, z,Ω,Λ)

× z̃iΛ (ε,E ,Θ, z,Ω,Λ)
)
dPr (ε) dΩ(z)

Evaluating this term at σ = 0 and exploiting z̄Λ(z) = 0 we have

Ω̄EΛ = −
∑
i

∫
δ(zi − yi)

∏
j ̸=i

ι(zj ≤ yj)z̄iEΛ(z)dΩ(z)

23For compactness we have not expanded terms like ∂
∂zRΛ(z), but this is easily accom-

plished. For example ∂
∂zRΛ(z) = RΛz(z) + RΘx(z)x̄Λ(z) .
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and thus

ω̄EΛ(y) = −
∑
i

∂

∂yi

∫ ∏
j

δ(zj − yj)z̄iEΛ(z)dΩ(z) = −
∑
i

∂

∂yi
(
z̄iEΛ(y)ω(y)

)
and hence

X̄ ′
EΛ = −D−1

∫
R(z)

∑
i

∂

∂zi
(
z̄iEΛ(z)ω(z)

)
dz

= D−1

∫ ∑
i

(
∂

∂zi
R(z)

)
z̄iEΛ(z)ω(z)dz

= D−1

∫ ∑
i

(Rzi(z) + Rx(z)x̄zi(z)) z̄iEΛdΩ(z)

= D−1

∫
(Rz(z) + Rx(z)x̄z(z)) qx̄EΛ(z)dΩ(z)

which combined with the second derivative of R w.r.t. EΛ (defining X̄+
E = X̄Θ + X̄ ′

E +

X̄ΛΛ̄E)

∫ (
Rx(z)x̄EΛ(z) + RX(z)X̄EΛ + RX+(z)

(
X̄ΘΛΛ̄Λ + ∂X̄Λ · Ω̄E + X̄ΛΛΛ̄ΛΛ̄E + X̄ ′

EΛ + X̄ΛPX̄EΛ
)

+ Rxx(z) · (x̄E(z), x̄Λ(z)) + RxX(z) ·
(
x̄E(z), X̄Λ

)
+ RxX+ ·

(
x̄E(z), X̄ΛΛ̄Λ

)
+ RxΛ(z)x̄E(z)

+ RXx(z) ·
(
X̄E , x̄Λ(z)

)
+ RXX(z) ·

(
X̄E , X̄Λ

)
+ RXX+(z) ·

(
X̄E , X̄ΛΛ̄Λ

)
+ RXΛ(z)X̄E

+ RX+x(z) ·
(
X̄+

E , x̄Λ(z)
)
+ RX+X(z) ·

(
X̄+

E , X̄Λ

)
+ RX+X+(z) ·

(
X̄+

E , X̄ΛΛ̄Λ

)
+ RX+Λ(z)X̄

+
E

+ REx(z)x̄Λ(z) + REX(z)X̄Λ + REX+(z)X̄ΛΛ̄Λ + REΛ(z)

)
dΩ(z) = 0

gives a linear relationship
FF
[
X̄EΛ X̄ ′

EΛ

]
= GG (92)

to solve for X̄EΛ. A similar approach can be used to obtain expressions for x̄EΘ(z), X̄EΘ,
x̄σΘ(z), X̄σΘ, x̄σΛ(z), and X̄σΛ, which take the same form.
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For x̄EE we see

0 =Fxx̄EE + FXX̄EE + Fx+

(
x̄zpx̄EE + ∂x̄ · Ω̄EE + x̄ΛPX̄EE + x̄ΘΘ + x̄Θz · (I, z̄E) + ∂x̄Θ ·

(
I, Ω̄E

)
+ x̄ΘΛ ·

(
I, Λ̄E

)
+ x̄zz · (z̄E , z̄E) + x̄zΘ · (z̄E , I) + ∂x̄z ·

(
z̄E , Ω̄E

)
+ x̄zΛ ·

(
z̄E , Λ̄E

)
+ ∂x̄Θ ·

(
Ω̄E , I

)
+ ∂x̄z ·

(
Ω̄E , z̄E

)
+ ∂x̄Θ ·

(
Ω̄E , I

)
+ ∂x̄z ·

(
Ω̄E , z̄E

)
+ ∂2x̄ · (Ω̄E , Ω̄E) + ∂x̄Λ ·

(
Ω̄E , Λ̄E

)
+ x̄ΛΘ ·

(
Λ̄E , I

)
+ x̄Λz ·

(
Λ̄E , z̄E

)
+ ∂x̄Λ ·

(
ΛE , Ω̄E

)
+ x̄ΛΛ · (ΛE ,ΛE)

)
+ Fxx · (x̄E , x̄E)

+ FxX ·
(
x̄E , X̄E

)
+ Fxx+ ·

(
x̄E , x̄

+
E
)
+ FxE · (x̄E , I) + FXx ·

(
X̄E , x̄E

)
+ FXX ·

(
X̄E , X̄E

)
+ FXx+ ·

(
X̄E , x̄

+
E
)
+ FXE ·

(
X̄E , I

)
+ Fx+x ·

(
x̄+
E , x̄E

)
+ Fx+X ·

(
x̄+
E , X̄E

)
+ Fx+x+ ·

(
x̄+
E , x̄

+
E
)

+ Fx+E ·
(
x̄+
E , I

)
+ FEx · (I, x̄E) + FEX ·

(
I, X̄E

)
+ FEx+ ·

(
I, x̄+

E
)
+ FEE

Once again, almost all of these terms are already known with the exception of ∂2x̄ ·
(Ω̄E , Ω̄E) which is computable from the expressions for ∂2X̄ above and ∂x̄ · Ω̄EE which
equals

∂x̄(z) · Ω̄EE = C(z)∂X̄ · Ω̄EE = C(z)X̄ ′
EE .

Thus, we have that
H(z)x̄EE(z) = HH(z)

[
I X̄EE X̄ ′

EE

]⊺
, (93)

where H(z) is the same as in the first-order expansion equation (80) and HH(z) is computable
from the first-order terms.

To solve for X̄EE and X̄ ′
EE we first need Ω̄EE which we find by differentiating the law
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of motion for Ω to get

Ω̃EE(E ,Θ,Ω,Λ)(y) =−
∫ ∑

i

δ(z̃i (ε,E ,Θ,z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ,z,Ω,Λ) ≤ yj

)
× z̃iEE (ε,E ,Θ, z,Ω,Λ) dPr(ε)dΩ(z)

−
∫ (∑

i

δ′(z̃i (ε,E ,Θ,z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ, z,Ω,Λ) ≤ yj

)
× z̃iE (ε,E,Θ, z,Ω,Λ) z̃iE (ε,E ,Θ, z,Ω,Λ)

)
dPr (ε) dΩ(z)

+

∫ (∑
i

∑
j ̸=i

δ(z̃i (ε,E,Θ, z,Ω,Λ)− yi)δ(z̃j (ε,E,Θ, z,Ω,Λ)− yj)

×
∏
k ̸=i,j

ι
(
z̃k (ε,E ,Θ,z,Ω,Λ) ≤ yk

)
z̃jE (ε,E ,Θ, z,Ω,Λ)

× z̃iE (ε,E,Θ, z,Ω,Λ) dPr (ε) dΩ(z)

)
.

Evaluated at σ = 0, this becomes

Ω̄EE(y) =−
∫ ∑

i

δ(zi − yi)
∏
j ̸=i

ι(zj − yj)z̄iEE(z)dΩ(z)

−
∫ ∑

i

δ′(zi − yi)
∏
j ̸=i

ι(zj − yj)
[
z̄iE(z)

]2
dΩ(z)

+

∫ ∑
i

δ(zi − yi)
∑
j ̸=i

δ(zj − yj)
∏
k ̸=i,j

ι(zk − yk)z̄jE(z)z̄
i
E(z)dΩ(z)

and

ω̄EE(y) =
∂nz

∂y1∂y2 · · · ∂ynz
Ω̄EE(y) =−

∑
i

∂

∂yi

∫ ∏
j

δ(zj − yj)z̄iEE(z)dΩ(z)

−
∑
i

∂

∂yi

∫
δ′(zi − yi)

∏
j ̸=i

δ(zj − yj)
(
z̄iE(z)

)2
dΩ(z)

+
∑
i

∑
j ̸=i

∂2

∂yi∂yj

∫ ∏
j

δ(zj − yj)z̄jE(z)z̄
i
EdΩ(z)

=−
∑
i

∂

∂yi
(
z̄iEE(y)ω(y)

)
+
∑
i

∑
j

∂2

∂yi∂yj

(
z̄iE(y)z̄

j
E(y)ω(y)

)
.
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Thus,

X̄ ′
EE =

∫
R(z)

−
∑
i

∂

∂zi
(
z̄iEE(z)ω(z)

)
+
∑
i

∑
j

∂2

∂zi∂zj

(
z̄iE(z)z̄

j
E(z)ω(z)

) dz

=

∫
(Rz(z) + Rx(z)x̄z(z)) px̄

i
EE(z)ω(z)dz

+

∫ (
Rzz(z) + Rxz(z) · (I, x̄z(z)) + Rzx(z) · (x̄z(z), I) + Rxx(z) · (x̄z(z), x̄z(z))

)
· (px̄E(z), px̄E(z))ω(z)dz

which when combined with the second derivative of R w.r.t EE

0 =

∫ (
RX+(z)

(
X̄ΘΘ + ∂X̄Θ ·

(
I, Ω̄E

)
+ X̄ΘΛ ·

(
I, Λ̄E

)
+ ∂X̄Θ ·

(
Ω̄E , I

)
+ ∂2X̄ ·

(
Ω̄E , Ω̄E

)
+ ∂X̄Λ ·

(
Ω̄E ,ΛE

)
+ X̄ΛΘ ·

(
Λ̄E , I

)
+ ∂X̄Λ ·

(
Λ̄E , I

)
+ X̄ΛΛΛ̄

2
E + X̄ ′

EE + X̄ΛPX̄EE

)
+ Rx(z)x̄EE(z) + RX(z)X̄EE + Rxx(z) · (x̄E(z), x̄E(z)) + RxX(z) ·

(
x̄E(z), X̄E

)
+ RxX+(z) ·

(
x̄E(z), X̄

+
E
)
+ RxE(z) · (x̄E(z), I) + RXx(z) ·

(
X̄E , x̄E(z)

)
+ RXX(z) ·

(
X̄E , X̄E

)
+ RXX+(z) ·

(
X̄E , X̄

+
E
)
+ RXE(z) ·

(
X̄E , I

)
+ RX+x(z) ·

(
X̄+

E , x̄E(z)
)
+ RX+X(z) ·

(
X̄+

E , X̄E
)
+ RX+X+(z) ·

(
X̄+

E , X̄
+
E
)

+ RX+E(z) ·
(
X̄+

E , I
)
+ REx(z) · (I, x̄E(z)) + REX(z) ·

(
I, X̄E

)
+ REX+(z) ·

(
I, X̄+

E
)
+ REE(z)

)
dΩ(z)

gives a system of linear equations of the form

K ·
[
X̄EE X̄ ′

EE

]⊺
= II. (94)

A similar approach can be used to obtain expressions for x̄Eσ(z) and X̄Eσ which take the
same form.

Finally, for the second-order expansion we need the effect of the presence of risk. Differ-

21



entiation of F gives, after defining x̄+
σ = x̄zz̄σ + ∂x̄ · Ω̄σ + x̄ΛΛ̄σ + x̄σ,

0 =Fxx̄σσ + FXX̄σσ + Fx+

(
E [x̄εε · (ε, ε) + x̄EE · (E,E)] + x̄zpx̄σσ + ∂x̄ · Ω̄σσ + x̄ΛPX̄σσ

)

+ Fx+

(
x̄zz · (z̄σ, z̄σ) + 2∂x̄z · (Ω̄σ, z̄σ) + 2x̄zΛ · (z̄σ, Λ̄σ) + 2x̄zσz̄σ + ∂2x̄ · (Ω̄σ, Ω̄σ)

+ 2∂x̄Λ · (Ω̄σ, Λ̄σ) + 2∂x̄σ · Ω̄σ + x̄ΛΛ · (Λ̄σ, Λ̄σ) + 2x̄ΛσΛ̄σ + x̄σσ

)
+ Fx−x− · (x̄σ,x̄σ)

+ 2Fx−x · (x̄σ, x̄σ) + 2Fx−X(x̄σ, X̄σ) + 2Fx−x+ · (x̄σ, x̄+
σ ) + 2Fx−σx̄σ

+ Fxx · (x̄σ, x̄σ) + 2FxX · (x̄σ, X̄σ) + 2Fxx+ · (x̄σ, x̄+
σ ) + 2Fxσx̄σ + FXX · (X̄σ, X̄σ)

+ 2FXx+ · (X̄σ, x̄
+
σ ) + 2FXσX̄σ + Fx+x+ · (x̄+

σ , x̄
+
σ ) + 2Fx+σx̄

+
σ + Fσσ

+ Fx−E [x̄σσ + x̄εε · (ε, ε) + x̄EE · (E,E)] = 0.

or24

0 =Fxx̄σσ + FXX̄σσ + Fx+

(
x̄εε · var(ε) + x̄EE · var(E) + x̄zpx̄σσ + ∂x̄ · Ω̄σσ + x̄ΛPX̄σσ

)

+ Fx+

(
x̄zz · (z̄σ, z̄σ) + 2∂x̄z · (Ω̄σ, z̄σ) + 2x̄zΛ · (z̄σ, Λ̄σ) + 2x̄zσz̄σ + ∂2x̄ · (Ω̄σ, Ω̄σ)

+ 2∂x̄Λ · (Ω̄σ, Λ̄σ) + 2∂x̄σ · Ω̄σ + x̄ΛΛ · (Λ̄σ, Λ̄σ) + 2x̄ΛσΛ̄σ + x̄σσ

)
+ Fx−x− · (x̄σ,x̄σ) + 2Fx−x · (x̄σ, x̄σ) + 2Fx−X(x̄σ, X̄σ) + 2Fx−x+ · (x̄σ, x̄+

σ ) + 2Fx−σx̄σ

+ Fxx · (x̄σ, x̄σ) + 2FxX · (x̄σ, X̄σ) + 2Fxx+ · (x̄σ, x̄+
σ ) + 2Fxσx̄σ + FXX · (X̄σ, X̄σ)

+ 2FXx+ · (X̄σ, x̄
+
σ ) + 2FXσX̄σ + Fx+x+ · (x̄+

σ , x̄
+
σ ) + 2Fx+σx̄

+
σ + Fσσ

+ Fx− [x̄σσ + x̄εε · var(ε) + x̄EE · var(E)]

Defining ∂x̄(z) · Ω̄σσ = C(z)∂X̄ · Ω̄σσ ≡ C(z)X̄ ′
σσ, we find that x̄σσ(z) solves the linear

system
JJ(z)x̄σσ(z) = KK(z)

[
I X̄σσ X̄ ′

σσ

]⊺
. (95)

24Recall x̄εε is a 3-dimensional tensor. We define x̄εε · var(ε) by the contraction∑
jk[x̄εε]ijkvar(ε)jk
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To solve for X̄ ′
σσ we need to find Ω̄σσ by differentiating the law of motion for Ω 25

Ω̃σσ(E ,Θ,Ω,Λ)(y) =−
∫ (∑

i

δ(z̃i (ε,E,Θ, z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E,Θ, z,Ω,Λ) ≤ yj

)
(
z̃iεε (ε,E ,Θ, z,Ω,Λ) · (ε, ε) + z̃iσσ (ε,E,Θ, z,Ω,Λ)

))
dPr(ε)dΩ(z)

−
∫ (∑

i

δ′(z̃i (ε,E ,Θ, z,Ω,Λ)− yi)
∏
j ̸=i

ι
(
z̃j (ε,E ,Θ, z,Ω,Λ) ≤ yj

)
(
z̃iε (ε,E,Θ, z,Ω,Λ) εz̃iε (ε,E ,Θ,z,Ω,Λ) ε

+ z̃iσ (ε,E ,Θ, z,Ω,Λ) z̃iσ (ε,E,Θ, z,Ω,Λ)
))

dPr (ε) dΩ(z)

−
∫ (∑

i

∑
j ̸=i

δ(z̃i (ε,E,Θ, z,Ω,Λ)− yi)δ(z̃j (ε,E,Θ, z,Ω,Λ)− yj)

∏
k ̸=i,j

ι
(
z̃k (ε,E ,Θ,z,Ω,Λ) ≤ yk

)(
z̃jε (ε,E,Θ, z,Ω,Λ) εz̃iε (ε,E,Θ, z,Ω,Λ) ε

z̃jσ (ε,E ,Θ,z,Ω,Λ) z̃iσ (ε,E,Θ, z,Ω,Λ)
))

dPr (ε) dΩ(z)

Evaluating at σ = 0 we find

Ω̄σσ(y) =−
∫ ∑

i

δ(zi − yi)
∏
j ̸=i

ι(zj − yj)
(
z̄iσσ(z) + z̄iεε · var(ε)

)
dΩ(z)

−
∫ ∑

i

δ′(zi − yi)
∏
j ̸=i

ι(zj − yj)
[
z̄iε(z)

]2 · var(ε) +
[
z̄iσ(z)

]2
dΩ(z)

+

∫ ∑
i

δ(zi − yi)
∑
j ̸=i

δ(zj − yj)
∏
k ̸=i,j

ι(zk − yk)
(
z̄jε(z)z̄

i
ε(z)

)
· var(ε) + z̄jσ(z)z̄

i
σ(z)dΩ(z)

which gives

ω̄σσ(y) =−
∑
i

∂

∂yi
((
z̄iσσ(y) + z̄iεε(y) · var(ε)

)
ω(y)

)
+
∑
i

∑
j

∂2

∂yi∂yj
(((

z̄iε(y)z̄
j
ε(y)

)
· var(ε) + z̄iσ(y)z̄

j
σ(y)

)
ω(y)

)
.

25For simplicity we drop the cross terms between σ and ε which integrate to 0 when
evaluated at σ = 0.
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Thus,

X̄ ′
σσ =

∫
R(z)

(
−
∑
i

∂

∂zi
(
(z̄iσσ(z) + z̄iεε(y)var(ε))ω(z)

)
+
∑
i

∑
j

∂2

∂zi∂zj
((
z̄iε(z)z̄

j
ε(z)var(ε) + z̄iσ(z)z̄

j
σ(z)

)
ω(z)

))
dz

=

∫
(Rz(z) + Rx(z)x̄z(z))

(
z̄iσσ(z) + z̄iεε(y)var(ε)

)
ω(z)dz

+

∫ (
Rzz(z) + Rxz(z) · (I, x̄z(z)) + Rzx(z) · (x̄z(z), I) + Rxx(z) · (x̄z(z), x̄z(z))

)
· (z̄ε(z), z̄ε(z)) · var(ε)ω(z)dz

+

∫ (
Rzz(z) + Rxz(z) · (I, x̄z(z)) + Rzx(z) · (x̄z(z), I) + Rxx(z) · (x̄z(z), x̄z(z))

)
· (z̄σ(z), z̄σ(z)) · var(ε)ω(z)dz

which combined with the second derivative of R w.r.t σσ , after defining X̄+
σ = X̄ ′

σ +

X̄ΛΛ̄σ + X̄σ∫ (
Rx(z) (x̄σσ(z) + x̄εε(z) · var(ε)) + RX(z)X̄σσ + RX+(z)

(
X̄ ′
σσ + X̄ΛPX̄σσ

)
+ RX+(z)

(
X̄ΛΛΛ̄

2
σ + 2∂X̄Λ · Ω̄σΛ̄σ + 2X̄ΛσΛ̄σ + ∂2X̄ · (Ω̄σ, Ω̄σ) + 2∂X̄σ · Ω̄σ + X̄σσ

)
+ Rxx(z) · (x̄σ(z), x̄σ(z)) + 2RxX(z) · (x̄σ(z), X̄σ) + 2RxX+(z) · (x̄σ(z), X̄+

σ ) + RXX(z) · (X̄σ, X̄σ)

+ 2RXX+(z) · (X̄σ, X̄
+
σ ) + 2RX+X+(z) · (X̄+

σ , X̄
+
σ ) + Rxx(z) · (x̄ε(z), x̄ε(z)) · var(ε)

+ 2 (Rxε(z)x̄ε(z)) · var(ε) + Rεε(z) · var(ε)

)
dΩ(z) = 0

gives a system of linear equations of the form

LL ·
[
X̄σσ X̄ ′

σσ

]⊺
= MM. (96)

B.7 Expansion Along Path

We now demonstrate how to compute the expansion along transition path when assuming
σ scales only the shocks and ρθ. Given the current (Θ,Λ), we will assume knowledge
of the non-stochastic transition path {Θ̄n, Λ̄n} with (Θ̄0, Λ̄0) = (Θ,Λ) and (Θ̄N , Λ̄N ) =
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(Θ̄, Λ̄) as well as the associated paths {x̄n, X̄n}.26 Sections B.4-B.6 give the derivatives
of the policy functions at (Θ̄N , Λ̄N ) = (Θ̄, Λ̄). We then proceed by backward induction,
assuming that all the derivatives of x̃ and X̃ are known at the point (0, Θ̄n+1,Ω, Λ̄n+1; 0) and
computing derivatives evaluated at (0, Θ̄n,Ω, Λ̄n; 0). We will denote derivatives evaluated at
(0, Θ̄n,Ω, Λ̄n; 0) by superscript n.

Differentiating with respect to Λ,

Fnx−(z)x̄
n
Λ(z) + Fnx(z)x̄

n
Λ(z) + Fnx+(z)

(
x̄n+1
Λ (z)PX̄n

Λ

)
+ FnX(z)X̄n

Λ = 0

and ∫
Rnx(z)x̄

n
Λ(z) + RnX(z)X̄n

Λ + RnX+(z)X̄
n+1
Λ PX̄n

Λ + RnΛ(z)dΩ = 0.

Solving for x̄nΛ(z) gives

x̄nΛ(z) = −
(
Fnx−(z) + Fnx(z)

)−1
(
Fnx+(z)x̄

n+1
Λ (z)P+ FnX(z)

)
X̄n

Λ,

and therefore X̄n
Λ equals

−
(∫ [

−Rnx(z)
(
Fnx−(z) + Fnx(z)

)−1
(
Fnx+(z)x̄

n+1
Λ (z)P+ FnX(z)

)
+ RnX(z) + RnX+(z)X̄

n+1
Λ P

]
dΩ

)−1

×
(∫

RnΛ(z)dΩ(z)

)
.

The Frechet derivative w.r.t Ω is computed as follows:

Fnx−(z)∂x̄
n(z)+Fnx(z)∂x̄

n(z)+Fnx+(z)∂x̄
n+1(z)+Fnx+(z)x̄

n+1
Λ (z)P∂X̄n+FnX(z)∂X̄n = 0

which gives

∂x̄n(z) = −
(
Fnx−(z) + Fnx(z)

)−1 [(
Fnx+(z)x̄

n+1
Λ (z)P+ FnX(z)

)
∂X̄n + Fnx+(z)∂x̄

n+1(z)
]

=
N−n∑
j=0

Cnj (z)∂X̄
n+j ,

where for the last expression we our knowledge that ∂X̄N = ∂X̄ and ∂x̄N (z) = ∂x̄(z) =

C(z)∂X̄ and then ∂x̄n(z) =
∑N−n

j=0 Cnj (z)∂X̄
n+j is derived from the recursion.

26The fact that Ω̃(0,Θ,Ω,Λ; 0) = Ω for any (Θ,Ω,Λ) makes computation of these terms
straightforward using a shooting algorithm.
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To find ∂X̄ we then take the Frechet derivative of R to get

0 =

∫ (
Rnx(z)∂x̄

n(z) ·∆+ RnX+(z)
(
(∂X̄n+1 ·∆) + X̄n+1

Λ P(∂X̄n ·∆)
)
+ RnX(z)∂X̄n ·∆

)
ω(z)dz

+

∫
Rn(z)δ(z)dz.

Substituting for ∂x̄n(z) = ∂X̄n, we get

∂X̄n ·∆ = −
(∫ (

Rnx(z)C
n
0 (z) + RnX+(z)X̄

n+1
Λ P+ RnX(z)

)
dΩ(z)

)−1 ∫
Rn(z)δ(z) + Rnx(z)∂x̄

n(z) ·∆dz

≡ (Dn)−1

∫ Rn(z)d∆+

N−n∑
j=1

Enj
(
∂X̄n+j ·∆

)
Finally we can compute the response to shock E (note we only need to do this for n = 0)

F0xx̄
0
E + F0x+

(
ρΘx̄1

Θ + x̄1
zpx̄

0
E + ∂x̄1 · Ω̄0

E + x̄1
ΛPX̄

0
E
)
+ F0XX̄0

E + F0E = 0.

Substituting for ∂x̄1 we obtain, after defining X̄j
E = ∂X̄j · Ω̄0

E

F0x(z)x̄E(z)+F0x+(z)

ρΘx̄1
Θ(z) + x̄1

z(z)px̄
n
E(z) +

N−1∑
j=0

C1
j (z)X̄

j+1
E + x̄1

Λ(z)PX̄
0
E

+F0X(z)X̄0
E+F0E(z) = 0,

or
M0(z)x̄0

E(z) = N0(z)
[
I X̄0

E X̄1
E · · · X̄N

E

]⊺
.

We obtain the following expression for X̄j
E for j = 1, . . . , N

X̄j
E =

(
Dj
)−1

(∫ (
Rjz(z) + Rjx(z)x̄

j
z(z)

)
px̄0

E(z)dΩ+

N−j∑
k=1

EjkX̄
j+k
E

)

which, when combined with

∫
R0
x(z)x̄

0
E(z) + R0

X(z)X̄0
E + R0

X+(z)
(
ρΘX̄1

Θ + X̄1
E + X̄1

ΛPX̄
0
E
)
+ R0

E(z)dΩ = 0,

yields the linear system

O ·
[
I X̄0

E X̄1
E · · · X̄N

E

]⊺
= P.
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C Simulation and Clustering

To simulate an optimal policy at each date with N agents, we discretize the distribution
across agents with K grid points that we find each period using a k-means clustering al-
gorithm. Let {zi}Ni=1 represent the current distribution of agents. The k-means algorithm
generates K points {z̄k}Kk=1 with each agent i assigned to a cluster k(i) to minimize the
squared error

∑
i ∥zi − z̄k(i)∥2. We let Ω represent the distribution of N agents and Ω̄

represent our approximating distribution of clusters.27 At each history, we apply our al-
gorithm to approximate the optimal policies around Ω̄. Moreover, by allowing σ to also
scale deviations of Ω from Ω̄, we can increase the accuracy of our approximate the policy
rules as follows. Let x̃(σε, σE , σ(Θ − Θ̄) + Θ̄, z, Ω̄ + σ(Ω − Ω̄), σ(Λ − Λ̄(Ω)) + Λ̄;σ) and
X̃(σE, σ(Θ − Θ̄) + Θ̄, Ω̄ + σ(Ω − Ω̄), σ(Λ − Λ̄(Ω));σ) denote the policy rules with scaling
parameters σ. We can them approximate these policies with a Taylor expansion with respect
to σ. For example, a first-order Taylor expansion would be

x̃(ε,Θ, z,Ω,Λ) ≈ x̄+
(
x̄εε+ x̄EE + x̄Θ(Θ− Θ̄) + ∂x̄ · (Ω− Ω̄) + x̄Λ(Λ− Λ̄) + x̄σ

)
σ

and

X̃(Θ,Ω,Λ) ≈ X̄ +
(
X̄EE + X̄Θ(Θ− Θ̄) + ∂X̄ · (Ω− Ω̄) + X̄Λ(Λ− Λ̄(Ω)) + X̄σ

)
σ.

Both ∂x̄ · (Ω − Ω̄) and ∂X̄ · (Ω − Ω̄) are easily computed from terms already computed
during the expansion, so these extra corrections have no additional computational cost.28

Note that when K = N we exactly approximate around Ω, but for K < N we can speed up
the computations by a factor of N

K . We choose K so that increasing K does not change the
impulse responses reported in section 5 which results in a K of 2000 to 3000 and N = 100000

depending on the experiment.

D Competitive Equilibrium with fixed government

policies

We demonstrate the application of our method outlined in section 3.1 to a problem of finding
a competitive equilibrium for fixed government policies. We have two goals in mind: First,

27Formally dΩ(z) =
∑

i
1
N δ(z − zi) while dΩ̄(z) =

∑
i

1
N δ(z − z̄k(i)).

28Following the steps in section (B.5) it can readily be seen that ∂X̄ ·(Ω−Ω̄) =
∫
A(z)(z−

z̄(z))dΩ̄(z) =
∑

i
1
NA(z̄k(i))(zi − z̄k(i)) and ∂x̄(z̄k) = C(z̄k)∂X̄ · Ω̄σ.
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the problem with fixed policies is simpler and explicit expressions for terms that arise in
many of the steps in section 3 as well as those in appendix B can be derived. Second, we use
this economy as a test case to analyze the accuracy of the our approximations by comparing
the second-order expansions to solutions obtained with global methods.

To make our exposition most transparent, we assume that government has no expendi-
tures, sets taxes Υt = Tt = 0 and implements inflation Πt = 0 in all periods. We assume all
agents have equal ownership of firms and that there is no permanent component of labor
productivity, θi,t = 0. Finally, we assume that the aggregate shock is i.i.d., which removes
Θ as a state variable. These assumptions deliver a version of Huggett (1993) economy
with natural borrowing limits extended to allow for endogenous labor supply and aggregate
shocks.

Individual decisions are expressed recursively. The aggregate variables depend on the
realized aggregate shock E and the beginning of the period distribution of assets Ω. Since we
assumed that government has no revenues, it also cannot issue debt, and so the distribution
Ω satisfies

∫
bdΩ = 0. We denote the space of such distributions by W. We use tildes

to denote policy functions, and let X̃ =
[
Q̃ W̃ D̃

]T
be a vector of aggregate policy

functions capturing interest rates, wages and dividends. Individual policy functions depend
both on aggregate state (E ,Ω) and on idiosyncratic state (ε, b) where ε is the realization
of the idiosyncratic shock that affects individual with asset beginning of period assets b.

Let x̃ =
[
b̃ c̃ ñ

]T
be the triplet of the individual policy functions. Finally, Ω̃ (E ,Ω) :

R ×W → W be the law of motion describing how the aggregate distribution of debt next
period is affected by the aggregate shock in the current period.

Individual optimality conditions consist of the budget constraint (2) and the optimality
conditions (13)-(14). In our recursive notation, these conditions read

c̃ (ε, E , b,Ω) + Q̃ (E ,Ω) b̃ (ε, E , b,Ω) = W̃ (E ,Ω) exp (E + ε) ñ (ε, E , b,Ω) (97a)

+ b+ D̃ (E ,Ω) ,

βE
{
uc

[
c̃
(
·, ·, b̃ (E , b,Ω) , Ω̃ (E ,Ω)

)]∣∣∣ E ,Ω} = Q̃ (E ,Ω)uc [c̃ (ε, E , b,Ω)] , (97b)

W̃ (E ,Ω) exp (E + ε)uc [c̃ (ε, E , b,Ω)] = −un [ñ (ε, E , b,Ω)] , (97c)

for all ε, E , b,Ω. These constraints construct the function F as in (20) of section 3. The
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aggregate constraints after imposing firm’s optimality (15) can be written as[∫
exp(E + ε)ñ (ε, E , b,Ω) dPr (ε) dΩ

]α
=

∫
c̃ (ε, E , b,Ω) dPr (ε) dΩ, (98a)

ϵ− 1

ϵ
α

[∫
exp(E + ε)ñ (ε, E , b,Ω) dPr (ε) dΩ

]α−1

= W̃ (E ,Ω) , (98b)(
1− ϵ− 1

ϵ
α

)[∫
exp(E + ε)ñ (ε, E , b,Ω) dPr (ε) dΩ

]α
= D̃ (E ,Ω) , (98c)

for all E ,Ω which construct the function (21) of section 3. Finally, the law of motion for the
distribution of debts induced by the savings behavior of the agents is given by

Ω̃ (E ,Ω) (y) =
∫
ι
(
b̃ (ε, E , b,Ω) ≤ y

)
dPr (ε) dΩ ∀y, (99)

where ι is the indicator variable.
Equations (97), (98), and (99) fully describe the equilibrium behavior.

D.1 Points of expansion and zeroth-order terms

Consider the expansion around deterministic economy with a given distribution of assets Ω.
Observe that we have

b̄ (b,Ω) = b for all b,Ω. (100)

This counterpart of lemma (1) implies that equations for deterministic economy are

c̄ (b,Ω) + Q̄ (Ω) b = W̄ (Ω) n̄ (b,Ω) + b+ D̄ (Ω) , (101a)

β = Q̄ (Ω) , (101b)

W̄ (Ω)uc [c̄ (b,Ω)] = −un [n̄ (b,Ω)] , (101c)

for all (b,Ω) and aggregate constraints[∫
n̄ (b,Ω) dΩ

]α
=

∫
c̄ (b,Ω) dΩ,

ϵ− 1

ϵ
α

[∫
n̄ (b,Ω) dΩ

]α−1

= W̄ (Ω) ,(
1− ϵ− 1

ϵ
α

)[∫
n̄ (b,Ω) dΩ

]α
= D̄ (Ω) ,

(102)

and the law of motion
Ω̄ (Ω) = Ω (103)
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that hold for all Ω.For a given Ω, we solve the system of equations above for x̄(b,Ω), X̄(Ω).
To obtain the coefficients of the first-order expansion of the policy functions, we will

need to know how policy functions are affected by perturbations to the individual state b.
Differentiate (101a) and (101c) with respect to b to get a linear system and then solving for
x̄b yields

x̄b(b) ≡

 b̄b(b)

c̄b(b)

n̄b(b)

 =

 1 0 0

Q̄− 1 1 W̄

0 W̄ucc [c̄ (b)] unn [n̄ (b)]


−1  1

D̄

0

 , (104)

where all the terms on the right hand side are known from the zeroth-order expansion.

D.2 First-order terms and factorization theorem

Consider the first order expansion with respect to σ of equations (98) and (97) and use
method of undetermined coefficients to find the derivatives that multiply σε and σE . The
derivatives x̄ε(b) are easy to find since they cancel out from the expansions of the feasibility
constraints and appear only in the individual optimality conditions

c̄ε (b) + Q̄b̄ε (b) = W̄ (n̄ (b) + n̄ε (b)) , (105a)

Q̄ucc[c̄(b)]c̄ε(b) = βucc[c̄(b)]c̄b(b)b̄ε(b), (105b)

W̄ (uc [c̄ (b)] + ucc [c̄ (b)] c̄ε (b)) = −unn [n̄ (b)] n̄ε (b) . (105c)

for all b. All variables apart from b̄ε (b) , c̄ε (b) , n̄ε (b), are known from the zeroth-order
expansion. Thus we can find b̄ε (b) , c̄ε (b) , n̄ε (b) separately for each b by solving this 3 × 3

system of equations. In the direct analogy with (104) we can write this solution compactly
as

x̄ε(b) = E(b)−1G(b) (106)

for matrices K(b),L(b) known from the zeroth-order expansion. Similarly it can be shown
that X̄σ, x̄σ are all zero vectors.

Solving for the effect of the aggregate shocks is more complicated because they affect the
distribution of debts and the aggregate constraints. Differentiating individual constraints
implies that

c̄E (b) + Q̄b̄E (b) + Q̄E b̄ (b) = W̄ (n̄ (b) + n̄E (b)) + W̄E n̄ (b) + D̄E ,(107a)

βucc[c̄(b)]
(
c̄b(b)b̄E(b) + ∂c̄(b) · Ω̄E

)
= Q̄ucc[c̄(b)]c̄E(b) + uc[c̄(b)]Q̄E , (107b)

W̄ (uc [c̄ (b)] + ucc [c̄ (b)] c̄E (b)) + W̄Euc [c̄ (b)] = −unn [n̄ (b)] n̄E (b) . (107c)
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while differentiating the aggregate constraints gives

αN̄α−1

∫
(n̄ (b) + n̄E (b)) dΩ =

∫
c̄E (b) dΩ,

ϵ− 1

ϵ
α (α− 1) N̄α−2

∫
(n̄ (b) + n̄E (b)) dΩ = W̄E ,(

1− ϵ− 1

ϵ
α

)
αN̄α−1

∫
(n̄ (b) + n̄E (b)) dΩ = D̄E ,

(108)

where N̄ is the aggregate labor supply in the zeroth-order expansion. Furthermore, by
differentiating equation (99) with respect to E and evaluating at σ = 0 it can readily be seen
that29

Ω̄E(b) = −ω(b)b̄E (b) for all b. (109)

This leads to the main difficulty of this problem: in order to solve for the response of
aggregates X̄E we must jointly solve equations (107a)-(108) for x̄E(b) for all b. Our resolution
is to apply the factorization theorem, theorem (1), to show that x̄E(b) can be constructed
as loadings on X̄E and X̄ ′

E = ∂X̄ · Ω̄E(b) which can be solved for independently.
Begin by differentiating the individual constraints with respect to Ω. Exploiting ∂Ω̄ = 1

yields

∂c̄(b) + b∂Q̄+ β∂b̄(b) = n̄(b)∂W̄ + W̄∂n̄(b) + ∂D̄

βucc[c̄(b)]
(
c̄b(b)∂b̄(b) + ∂c̄(b)

)
= uc[c̄(b)]∂Q̄+ βucc[c̄(b)]∂c̄(b)

W̄ucc[c̄(b)]∂c̄(b) + uc[c̄(b)]∂W̄ = unn[n̄(b)]∂n̄(b).

This can be represented by the matrix expression β 1 −W̄
βucc[c̄(b)]c̄b(b) 0 0

0 W̄ucc[c̄(b)] −unn[n̄(b)]


 ∂b̄(b)

∂c̄(b)

∂n̄(b)

 =

 −b n̄(b) 1

uc[c̄(b)] 0 0

0 −uc [c̄ (b)] 0


 ∂Q̄

∂W̄

∂D̄


which we can solve to yield the counterpart to the first result of theorem (1):

∂x̄(b) = C(b)∂X̄.

To obtain the second result we differentiate equations (98a)-(98c) in an arbitrary direction

29For the derivation in detail see section B.5.
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∆ evaluated at σ = 0 to find

αN̄α−1

(∫
n̄ (b) dΩ

)
·∆ =

(∫
c̄ (b) dΩ

)
·∆

ϵ− 1

ϵ
α (α− 1) N̄α−2

(∫
n̄ (b) dΩ

)
·∆ = ∂W̄ ·∆,(

1− ϵ− 1

ϵ
α

)
αN̄α−1

(∫
n̄ (b) dΩ

)
·∆ = ∂D̄ ·∆.

(110)

As noted in section (3),(∫
c̄ (b) dΩ

)
·∆ =

∫
∂c̄ (b) ·∆dΩ+

∫
c̄(b)d∆.

Evaluating this integral at ∆(b) = Ω̄E(b) = −ω(b)b̄E(b) and exploiting integration by parts
we find(∫

c̄ (b) dΩ

)
· Ω̄E =

∫
∂c̄ (b) · Ω̄EdΩ+

∫
c̄(b)dΩ̄E =

∫
C1(b)dΩ∂X̄ · Ω̄E +

∫
c̄b(b)b̄E(b)dΩ

where C1(b) represents the first row of C(b). As a similar relationship can be derived for(∫
n̄ (b) dΩ

)
· Ω̄E , plugging these into equations (110) yields a system of equations of the

form
D∂X̄ · Ω̄E =

∫
B(b)x̄E(b)dΩ

where D and B(b) are both known from zeroth-order terms. Solving for ∂X̄ · Ω̄E gives
∂X̄ · Ω̄E =

∫
A(b)x̄E(b)dΩ. When combined with our expression for ∂x̄(b), we get the

analogue of (75) of theorem 1

∂x̄(b) · Ω̄E = C(b)

∫
A(b)x̄E(b)dΩ.

Finally we can exploit this knowledge to solve for X̄E and x̄E(b) by first defining

∂x̄(b) · Ω̄E = C(b)∂X̄ · Ω̄E ≡ C(b)X̄ ′
E .

After substituting for ∂x̄(b) · Ω̄E , equation (107) now defines a linear relationship between
policy functions x̄E(b) and aggregate variables

[
X̄E X̄ ′

E

]
which is independent of any

other x̄E(b̂). Thus, we can write (107) for each b as

M(b)x̄E(b) = N(b) ·
[
X̄E X̄ ′

E

]T
, (111)
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where M(b) is a 3 × 3 matrix, and all coefficients of M(b) and N(b) are known from the
zeroth-order expansion. Thus we can solve for each x̄E(b) as a function of aggregate vari-
ables independently for each b. This simplifies analysis by breaking one system of 3K × 3K

equations into K system of 3× 3 equations for each of K levels of debt. We can substitute
the obtained expressions for x̄E(·) into equations (108) and

X̄ ′
E =

∫
A(b)x̄E(b)dΩ (112)

to generate a 6× 6 system of equations of the form

O ·
[
X̄E X̄ ′

E

]T
= P. (113)

Equation (113) can be easily solved numerically for X̄E , X̄
′
E . This completes the solution

for the first-order responses to the aggregate shock E .

D.3 Second and higher order terms

To construct a second-order expansion of policy functions we need additional terms. These
are x̄εε(b), x̄εσ(b), x̄EE(b), x̄Eσ(b), x̄σσ(b), X̄EE , X̄Eσ, X̄σσ. Calculations of x̄εε,x̄EE ,X̄EE then
proceeds analogously to their first-order counterparts, while the cross-partials x̄εσ, x̄Eσ, X̄Eσ

are all zeros. Unlike the first-order expansion, the intercept terms x̄σσ, X̄σσ are no longer
zero. They depend on var(ε), var(E) and capture such effects as precautionary savings.
Solution for x̄σσ(b), X̄σσ involves steps similar to those used to solve for x̄E(b), X̄E in the
previous section. Details are provided in section B.6.

D.4 Numerical implementation and accuracy

To implement our algorithm numerically, we approximate Ω with a discrete distributions
with K points {bk}k with masses {ωk}k. All the integrals in our expressions collapse then
to sums. For example, our expression (112) for X ′

E becomes

X̄ ′
E =

∑
k

A(bk)ωk b̄E(bk).

All intermediate terms, such as E(bk), can be computed independently for each k, making
the algorithm highly parallelizable. Once we compute approximations of the policy functions
in the current period, we use Monte-Carlo methods described in section C to obtain the next
period distribution of assets Ω̃, for which we repeat this procedure.

33



We now discuss the numerical accuracy of our approximations. To compare our (second-
order) approximated policy rules with those solved via global methods we shut down the
aggregate shocks and compute the steady state distribution of assets the model presented
in section D.3. Optimal policies of each agent are computed using the endogenous grid
method of Carol (2005). The steady-state distribution is approximated using a histogram
and computed using the transition matrix constructed from the policy rules following Young
(2010). We then compare the approximated policy rules using our method, around the same
stationary distribution, to those of the global solution. As noted in section D.3, even in
absence of aggregate shocks our techniques are still necessary, for a second-order expansion,
to determine the effect of the presence idiosyncratic risk on policies through x̄σσ and X̄σσ.

We calibrate the 6 parameters of this model, ν,γ,β, α, ϵ and σε, as follows. We set
ν = 1 and γ = 2 to match of calibration in section 4. β is set to target an interest rate of
2%. ϵ = 6 targets a markup of 20% and the decreasing returns to scale parameter, α, is
chosen to target a labor share of 0.66. The standard deviation σε is set at .25 to match our
calibration in section 4. We choose very loose ad-hoc borrowing constraints, b = −100 to
approximate a natural debt limit. To ensure an accurate approximation to the global policy
rules, we approximated the consumption and labor policy rules using cubic splines with 200
grid points and the steady-state distribution with a histogram with 1000 bins.

Agents’ policies and aggregate variables are then approximated using a second-order
approximation around the stationary distribution Ω̄ with the expressions derived in this
section. The equilibrium policy rules and aggregates, around this distribution of 1000 points,
can be approximated using single processor in 0.8 seconds. The equilibrium interest rate
found by perturbation code was 2.0013%. The percent error in the aggregate labor supply
was 0.036%. Finally, we can evaluate the policy errors for the individual agents. In the
first panel of figure VIII we plot the percentage errors for consumption relative to the global
solution for a median shock to ς along with a ±2.5 standard deviation shock.

For almost all of the agents, the perturbation methods perform well with errors less
than 0.1% which would correspond making an error in consumption of less than a dollar on
every $1000 dollars spent. As expected, since the quadratic approximation assumes natural
borrowing limits, the accuracy deteriorates near the borrowing limit assumed by the global
solution. The range plotted in figure VIII contains 99.2% of the agents in the stationary
distribution. As a robustness check, we also observe how accuracy behaves as we change σε.
For values of σε ∈ [0.1, 0.5], we compute the average absolute percentage error as∫ ∫ ∣∣cglobal(σεε, b;σε)− cpertub(σεε, b;σε)

∣∣
cglobal(σεε, b;σε)

dPr(ε)dΩ
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Figure VIII: Percentage error of consumption policy functions relative to global solution in
top panel. Bottom panel plots average (with respect to the stationary distribution) absolute
consumption error relative to global solution as σς varies.

and plot it in the bottom panel of figure VIII. We see that the average error remains very
low around the level of our calibration and increases moderately for higher σε.

E Robustness

We provide details for several cases that are discussed in sections 5 and 6 but omitted
from the main text. These include stationary TFP shocks, alternative welfare criteria, no
inequality shocks f = 0, and no menu costs ψ = 0.

Stationary TFP shocks are modeled as an AR(1) process (see equation 9a) in the text,
with autocorrelation ρΘ = 0.954 and std of EΘ = 3%. All other parameters and the initial
condition are kept as the same as the baseline calibration in section 4. The impulse responses
are computed to a one standard deviation negative shock. As mentioned in section 5.2, we
extend the definition of “natural rate” for our heterogeneous agent economy to be the real
interest rates in a competitive equilibrium with ψ = 0 that implements flexible prices, fiscal
policy set Υt at the non-stochastic optimum and initial conditions as in section 4. The
optimal response of the nominal rate in Figure IX is plotted as a deviation from this natural
rate and we see that it quite closely tracks the response in the baseline with the i.i.d growth
rate specification.
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Figure IX: Optimal monetary response to an AR(1) productivity shock. The solid line is
the baseline calibration with i.i.d growth rate shocks.

To illustrate the role of alternative preferences for the planner, we modify the objective
function (12) to introduce time-invariant Pareto weights ωi ∝ θαω

−1,i. We calibrate the αω such
that the optimal non-stochastic tax rate equals 24%. Our estimate suggests an αω = 0.75

indicating higher Pareto weights to productive agents which rationalizes low marginal tax
rates. We keep all other parameters and the initial condition as in the baseline calibration
and compute optimal monetary responses to a TFP shock in figure X and the markup
shock in figure XI. The fact that the responses are similar to the utilitarian case in the
baseline underlines that changes in Pareto wights primarily map into changes in the steady
state level of the tax rate while the response of policies to shocks is governed by insurance
motives arising mainly due to incomplete markets.

Next we turn to the case where we study TFP shocks with f = 0, implying that the
aggregate TFP shock results in the same proportional change labor productivity for all
agents. As mentioned in the text, even in absence of changes in inequality, a permanent
drop in wages with agents heterogeneous in asset holdings creates needs for insurance. The
exercise in figure XII allows us decompose the effect into the part that comes because initial
wealth differences and the part that comes because of heterogeneous exogenous exposure to
the shock.

Finally we study the case without nominal rigidities by setting ψ ≈ 0. In response to a
TFP shock (figure XIII), the planner provides insurance through inflation which generates
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Figure X: Optimal monetary response to a productivity shock with non-utilitarian Pareto
weights. The solid line is the baseline calibration with utilitarian Pareto weights
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Figure XI: Optimal monetary response to a markup shock with non utilitarian Pareto
weights. The solid line is the baseline calibration with utilitarian Pareto weights
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Figure XII: Optimal monetary response to a productivity shock with f = 0. The solid line
is the baseline case with f calibrated as in section 4.

state contingent returns. The size of response is about 3 to 4 times larger than the baseline
mainly driven by the fact that price changes are less costly and an effective way of insuring
against permanent TFP shocks. In response to a markup shock (figure XIV), we see that
real wages drop and then follow the path of the shock. This is quite different from the
baseline where planner increased real wages to redistribute to towards the wage earners from
equity holders. The reason for this difference is that absent nominal rigidities, the ability
of the planner to affect aggregate demand and wages through changes in nominal rates is
substantially diminished. The planner still induces some inflation on impact because bonds
and equities are correlated and lowering returns partially redistributes towards low wage
agents.
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Figure XIII: Optimal monetary response to a productivity shock with ψ = 0. The solid line
is the baseline calibration with ψ = 20.
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Figure XIV: Optimal monetary response to a markup shock with ψ = 0. The solid line is
the baseline calibration with ψ = 20.
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