Money and Banking in a New Keynesian Model

Monika Piazzesi Ciaran Rogers Martin Schneider

Stanford Stanford Stanford

ECB, March 2019

Various interest rates

Motivation

- Standard New Keynesian model
 - central bank controls short rate in household stochastic discount factor
 - ► short rate = return on savings & investment
- This paper: New Keynesian model with banking sector
 - central bank controls interest on Fed funds or reserves
 - households do not hold these assets directly
 - banks hold these assets to back inside money
 - ightarrow convenience yields on inside money, Fed funds, reserves
- Imperfect pass-through from policy rate to short rate
 - ► interest rate policy less powerful
 - ▶ less scope for multiple equilibria, even without Taylor principle
 - weaker pass-through if more nominal rigidities in balance sheets

Outline: three models

- 1. Central bank digital currency = reserve accounts for everyone
 - ► central bank controls interest rate on money & its supply
 - ⇒ minimal model to illustrate imperfect pass-through
- 2. Banking with abundant reserves ("floor system")
 - ► central bank controls reserve rate (= bond rate) & reserve supply
 - $\Rightarrow\,$ works like CBDC model, but coefficients depend on bank balance sheets
- 3. Banking with scarce reserves ("corridor system")
 - ► central bank sets reserve rate, targets interbank rate
 - supply of reserves adjusts to achieve target rate
 - ⇒ works like CBDC model with more elastic money supply

Central bank digital currency model: setup

- Representative household
 - ► separable in labor + CES bundle of consumption & money
 - $\sigma = IES$ for bundles, $\eta = interest$ elasticity of money demand
 - for now, separable in consumption & money: $\eta = \sigma$
 - ▶ later consider complementarity: $\eta < \sigma$
- Firms
 - ► consumption goods = CES aggregate of intermediates
 - ► intermediate goods made 1-1 from labor, Calvo price setting
- Government: central bank digital currency
 - ightharpoonup path for money supply D_t
 - path or rule for *policy rate* i_t^D = interest rate on money
 - ► lump sum taxes adjust to satisfy budget constraint
- Market clearing: goods, money, labor
 - $ightharpoonup i_t^S = ext{short rate in household SDF adjusts endogenously}$

Linear dynamics

- Linearize around steady state with zero inflation, policy rate r^P
- Standard NK Phillips curve & Euler equation

$$\Delta \hat{p}_{t} = \beta \Delta \hat{p}_{t+1} + \kappa \hat{y}_{t}
\hat{y}_{t} = \hat{y}_{t+1} - \sigma \left(i_{t}^{S} - \Delta \hat{p}_{t+1} - \delta \right)$$

Interest rate pass-through: equalize expected returns

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$
discount rate interest rate policy convenience yield, increasing in velocity = spending / money

- Monetary policy
 - ▶ path for money supply + path or rule for policy rate i_t^D

Comparison to three equation NK model

- Same NK Phillips curve & Euler equation
- Interest rate pass-through

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$
discount rate interest rate policy convenience yield, increasing in velocity = spending / money

- Policy does not control short rate in SDF i_t^S
 - ► convenience yield on money = endogenous wedge
 - ▶ imperfect pass through: higher policy rate lowers convenience yield
 - approach standard model if demand very elastic
 - ▶ Taylor rule for i_t^D → price level targeting rule for i_t^S
- Price level a (nontrivial) state variable
- Money supply is separate policy tool

Comparison to three equation NK model

- Same NK Phillips curve & Euler equation
- Interest rate pass-through

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$
discount rate interest rate policy convenience yield, increasing in velocity = spending / money

Money demand & supply in standard model

$$i_t^S - \delta = \frac{\delta}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$

- ► zero interest rate on money
- ▶ money elastically supplied to achieve i_t^S
- ► system block recursive, "money doesn't matter"

Interest rate policy

Standard model: short rate = policy rate

$$i_t^S - \delta = i_t^S - \delta$$

Transmission in standard model

Interest rate policy

Central bank digital currency: interest rate pass-through

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$

Transmission with central bank digital currency

- More dampening of interest policy if
 - ▶ money demand less interest elastic, money supply less income elastic

Local determinacy

Interest rate pass-through

$$i_t^S - \delta = i_t^D - r^D + \frac{\delta - r^D}{\eta} \left(\hat{p}_t + \hat{y}_t - \hat{d}_t \right)$$

• Multiple bounded equilibrium paths with interest rate peg?

- Central bank digital currency
 - lacktriangledown lower spending ightarrow lower convenience yield, lower return on savings!
 - ▶ works like Taylor principle: lower rate if low inflation, output

Cost channel

- Consumption & money complements in utility
 - ▶ nonseparable utility with $\eta < \sigma$
 - higher cost of liquidity $i_t^S i_t^D$ makes shopping less attractive
 - → reduce consumption, increase leisure/lower labor
 - \rightarrow lower output, higher inflation
- Effect of higher policy rate:
 - lacktriangledown standard model: higher $i_t^{\mathcal{S}}$ with fixed $i_t^{\mathcal{D}}
 ightarrow$ higher cost
 - lacktriangleright CBDC model: higher i_t^D + imperfect pass-through ightarrow lower cost
- Numerical example
 - $\delta = 4.9\%$, $r^D = 2.5\%$, $\sigma = 1$, $\eta = .2$, standard cost & Calvo pars
 - constant money supply
 - ► Taylor rule with coefficient 1.5 on inflation, .5 on past short rate
 - ► compare impulse responses to 25bp monetary policy shock

IRFs to monetary policy shock

CBDC model: summary

- Policy rate = rate on money, which has convenience yield
 - imperfect pass through from policy rate to short rate in SDF
 - weaker policy impact, especially with cost channel
 - determinacy even when central bank does not respond to inflation
 - money is a separate policy tool
- Role of money supply as "nominal anchor"
 - ► government fixes nominal money: stronger convenience yield effect
 - not essential for above results
- Propositions on determinacy for more general money supply rules
 - need conditions for coefficients, easy to satisfy with separability
 - ▶ with cost channel: multiple equilibria with strong output response
- Key properties shared by banking models...

Outline: three models

- 1. Central bank digital currency = reserve accounts for everyone
 - ▷ central bank controls interest rate on money & its supply
 - ⇒ minimal model to illustrate imperfect pass-through
- 2. Banking with abundant reserves ("floor system")
 - ► central bank controls reserve rate (= bond rate) & reserve supply
 - \Rightarrow works like CBDC model, but coefficients depend on bank balance sheets
- 3. Banking with scarce reserves ("corridor system")
 - ▷ central bank sets reserve rate, targets interbank rate
 - > supply of reserves adjusts to achieve target rate
 - ⇒ works like CBDC model with more elastic money supply

Banking with abundant reserves

- Many monopolistically competitive banks
 - lacktriangle households care about CES bundle of deposit varieties; elasticity η^b
 - ► households own banks, maximize shareholder value

Assets		Liabilities	
M	Reserves	Money	D
A	Other assets	Equity	

- ▶ leverage constraint: $D_t \le \ell (M_t + \rho A_t)$ with $\rho < 1$
- costless adjustment of equity
- Government: floor system with abundant reserves
 - ▶ path for supply of reserves M_t
 - ightharpoonup path or rule for interest rate on reserve i_t^M
- Market clearing for reserves & other bank assets
 - ightharpoonup exogenous supply of nominal assets A_t

Dynamics with abundant reserves

- NK Phillips curve & Euler equation unchanged
- Interest rate pass-through: reserve rate to short rate

$$i_t^S - \delta = i_t^M - r^M + \frac{\delta - r^M}{\eta} \left(\hat{\rho}_t + \hat{y}_t - \hat{d}_t \right)$$

- lacktriangle banks equate returns on assets & liabilities to cost of capital i_t^S
- reserves back inside money, inherit convenience yield of deposits
- Cost of liquidity

$$i_t^S - i_t^D = \frac{\eta_b}{\eta_b - 1} \ell^{-1} \left(i_t^S - i_t^M \right)$$

- ► markup over banks' marginal cost; determines strength of cost channel
- Money supply

$$\hat{d}_t = rac{M}{M + lpha A} \hat{m}_t + rac{
ho A}{M + lpha A} \hat{a}_t$$

- ► reserves a separate policy instrument: QE stimulates economy!
- ▶ other bank assets also matter: bad loan shocks contractionary

Outline: three models

- 1. Central bank digital currency = reserve accounts for everyone
 - ▷ central bank controls interest rate on money & its supply
 - ⇒ minimal model to illustrate imperfect pass-through
- 2. Banking with abundant reserves ("floor system")
 - ▷ central bank controls reserve rate (= bond rate) & reserve supply
 - \Rightarrow works like CBDC model, but coefficients depend on bank balance sheets
- 3. Banking with scarce reserves ("corridor system")
 - ► central bank sets reserve rate, targets interbank rate
 - supply of reserves adjusts to achieve target rate
 - ⇒ works like CBDC model with more elastic money supply

Banking with scarce reserves

- Liquidity shocks
 - ► deposit in- or outflows after choice of reserves, loans, deposits
 - \triangleright competitive Fed funds market: borrow, lend reserves at rate i^F
 - ► leverage constraint must hold *after* liquidity shocks
 - ▶ Fed funds worse collateral than reserves, weight $\phi < 1$
- Optimal liquidity management
 - ▶ borrow if too few reserves to meet outflows, lend reserves otherwise
 - ▶ liquidity benefit of reserves: hold reserves even if $i^M < i^F$
 - ► elastic deposit supply: falls with policy rate to avoid costly leverage
- Government: corridor system with scarce reserves
 - ▶ path or rule for fed funds rate i_t^F , reserve rate i_t^M ; here $i_t^M = 0$
 - reserve supply adjusts to meet interest rate targets
 - ► reserves scarce in equilibrium if Funds rate sufficiently high
- \bullet Reserveless limit: share of reserves in bank assets $\to 0$

Dynamics with scarce reserves

- Same transmission mechanism as before
 - interest rate pass-through: Fed funds rate i_t^F to short rate i_t^S
 - cost of liquidity: $i_t^S i_t^D = \text{markup } (i_t^S i_t^F)$
- ullet New element: elastic money supply, parameter arepsilon

$$\hat{d}_{t} = \frac{\eta}{\eta + \varepsilon} \hat{a}_{t} + \frac{\varepsilon}{\eta + \varepsilon} \left(\hat{p}_{t} + \hat{y}_{t} - \frac{\eta}{r^{F}} \left(i_{t}^{F} - r^{F} \right) \right)$$

- elastic supply of reserves: money supply income- and interest elastic
- \blacktriangleright higher ε : closer to standard model
- Numerical example: compare IRFs under floor & corridor systems
 - $m \delta = {
 m short} \ {
 m rate} \ {
 m from \ term \ structure \ model} \ {
 m estimated} \ {
 m w/o} \ {
 m Tbills}$
 - ▶ policy rates r^F , r^M = average Tbill rate
 - ► deposit rate = MZM own rate, markup chosen to match spread
 - ightharpoonup chosen to match impact effect on deposit rate in corridor system

IRFs to monetary policy shock

Conclusion

- Imperfect pass-through from policy rate to short rate
 - interest rate policy less powerful
 - ► less scope for multiple equilibria, even without Taylor principle
 - ► weaker pass-through if more nominal rigidities in balance sheets
- Bank models vs CBDC model
 - same basic transmission mechanism
 - difference to standard model depends on details of banking system:
 - ★ nominal rigidities in bank balance sheets, bank market power
 - ★ liquidity management & elasticity of deposit supply
- Corridor vs floor system
 - with cost channel, large difference in IRFs
 - corridor system closer to standard model than floor system