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Key Takeaways

e Large-scale dynamic factor models (DFM) infeasible to estimate with
direct numerical likelihood maximization.
—> Expectation-Maximization (EM) algorithm provides alternative.

e However, the EM algorithm fails in a low-noise environment.
—> bixtremely slow convergence leading to poor estimates.

e We solve these issues with the Adaptive EM algorithm and/or with
carefully injecting artificial noise.

Low-Noise DFM

e Popular practice in macroeconomic forecasting/nowcasting with DFMs is
to allow for serial correlation in idiosyncratic component &;.
—> Possible efficiency/forecasting gains.

e Use framework of Banbura and Modugno (2014) to achieve this by includ-
ing &; in state vector and introduce artificial error term e; with
small variance  in order to apply EM in its usual form.

e .ow-noise DFM with measurement equation

Yr = (A I) (2) T €,

with & a small pre-fixed value (e.g., 107%) and (V)AR dynamics for states.

e; ~ i.id. N(0,xI), (1)
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Monte Carlo Simulations

Failure of EM in Low-Noise DFM

e The M-step of the factor loading matrix A can be written as

T T =L
=4y ( Lomo (et ) (Sme (1))
t=1 t=1
o In fact, Petersen et al. (2005) show that
A= Aj+ kA + Ok, (2)

highlighting that the learning rate of M-step for A is proportional to the
artificial noise level k.

e This implies that if the variance of e; becomes smaller (i.e., K — 0) that
the EM parameter update stagnates (i.e., A;;; — A)).

e Generate data from exact factor model a la Banbura and Modugno (2014)

and estimate low-noise DFM given in equation (1).

e Use two-step (25) approach, EM algorithm and Adaptive EM algorithm
for estimation with Kk = 107 and Kk = 1072,

e Assess precision of parameter estimates with average RMSE and precision
of factor estimates with average trace R over 500 MC replications.

e Results for T" = 50 and N = 10 (but similar for larger T" and N):

(a) Average RMSE of loadings (A) (b) Average trace statistics(R%)

0.95

T e
0.9t e
06 _ | 085 _ K
O
E
.C£1 O 8
B 0.5 5
2 !
a S 0.75 ¢
0.4 5 ______________
0.7 _=-="" AEM(k = 1072) | A
V.-~ ] AEM(k = 107)
0.3 ¢ et re e rrrrrrsre e et rarrarraren EM(k = 10—2)
0.6 - - =EM(k=10"%) |]
........... 2§
0.2 ' ' ' ' 0.6 ' ' ' '
0 200 400 600 800 1000 0 200 400 600 300 1000

Iterations Iterations

e [ixtremely slow convergence of EM algorithm for estimation of A.
—> Almost from two-step (25) initialization!

e Adaptive EM and slightly higher value of s lead to much faster rate of
convergence and thus more accurate estimates.

e Slow convergence of loadings also influences accuracy factor estimates.

e Results persist for other model (mis-)specifications.

Empirical Application

e Construct sequence of euro area GDP nowcasts/forecasts for 2006Q1 to
202204 using macroeconomic dataset based on mixed-frequency DFM with
serially correlated errors.

e Results for full-sample estimation and pseudo real-time nowcasting exercise
based on small-scale model (i.e., N = 10):

(b) Relative RMSFE of GDP nowcasts compared to

(a) Full-sample: LL over iterations
mean based on mixed-frequency DFM with xk = 1074
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‘Solutions to EM failure in Low-Noise DFM

Adaptive EM

e The Adapative Overrelaxed EM (AEM) algorithm of Salakhutdinov and
Roweis (2003) boosts the parameter updates by an adaptive
factor 7);.

e The M-step of the factor loading matrix A in the AEM is

AEM AEM AEM

e Combining this with equation (2) gives

AEM AEM At AEM 4
j+1 — Aj -+ ﬁjli/lj -+ O(li ),

showing that 7, counters low noise level k and speeds up convergence.

o Following Salakhutdinov and Roweis (2003), use 0,41 = an; with a = 1.1
and m; = 1.

Careful selection of noise level &

e Increasing k gives more artificial noise, but also increases the learning
rate of the M-step, which could potentially speed up EM algorithm con-
vergence (see, e.g., Osoba et al., 2013).

e Caretully select amount of noise based on Monte Carlo simulations.
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e AEM leads to larger increments and faster convergence of log-

likelihood than EM, especially for small noise k = 107

o Al

L+

M produces substantial nowcast gains compared to 25 and EM.
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