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Abstract

I show that the detrending of financial variables with the Hodrick and Prescott (1981, 1997) (HP)
and band-pass filters leads to spurious cycles. I find that distortions become especially severe when
considering medium-term cycles, i.e., cycles that exceed the duration of regular business cycles. In
particular, these medium-term filters amplify the variances of cycles of duration around 20 to 30
years up to a factor of 204, completely cancelling out shorter-term fluctuations. This is important
because it is common practice, and recommended under Basel III, to extract medium-term cycles
using such filters; e.g., the HP filter with a smoothing parameter of 400,000. In addition, I find that
financial cycle facts, i.e., differing amplitude, duration, and synchronisation of cycles in financial
variables relative to cycles in GDP, are robust. For HP and band-pass filters, differences to GDP
become marginal due to spurious cycles.
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NON-TECHNICAL SUMMARY

The recent global financial crisis has led to a broad consensus that microprudential, monetary, fiscal,

or other policies may not always assure financial stability, indicating the need to adopt macroprudential

policy. Macroprudential policy addresses the time series and cross-sectional dimensions of systemic

risk.1 Within the time series dimension, macroprudential policy aims to limit the build-up and correction

phases of ebullient cycles in financial variables, which are often accompanied by financial recessions,

i.e., recessions that occur in tandem with banking crises. Thus, the expansionary and contractionary

phases, or cycles, of financial variables are at the centre of macroprudential policy-making.

Financial variables, however, are trending; a feature that masks possible cycles. In the business

cycle context, the variables of interest are trending as well. Here, it is common practice to decompose

the trending variables, such as real output, into a secular (or trend) component and a non-trending, i.e.,

stationary, component that potentially shows cyclical behaviour. Researchers and practitioners in the

financial cycle context have taken a similar approach. However, in contrast to research on business

cycles, studies have stressed that financial cycles are of longer duration, i.e. lasting up to 30 years,

where eight years is regarded as the usual maximum duration of a business cycle. Further, Basel III

regulations advise considering medium-term cycles of the credit-to-GDP ratio to guide the rates of

countercyclical capital buffer (CCyB) by mechanically employing a Hodrick and Prescott (1981, 1997)

(HP) filter with a smoothing parameter of 400,000. The extraction of such medium-duration cycles,

however, is non-standard in the business cycle context and, thus, has not been debated by the previous

literature.

The current study fills this gap by providing insights on the effects of different methods of detrending

on financial variables, among others, considering the extraction of medium-term cycles. Further, using

various methods of detrending, I revisit the question of whether cycles in financial variables are indeed

marked by different characteristics than business cycles. Such evidence can serve as an important

argument for a complementary role of macroprudential policy to other macroeconomic policies that

mainly target the business cycle. Put differently, robust differences would substantiate the argument

that, for example, monetary policy may not be able to efficiently stabilise both the business and financial

cycle.

Findings suggest that the HP and the Baxter and King (1999) (BK) filters induce artificial boom-bust

phases, i.e., spurious cycles, into financial but also business cycle variables. The negative consequences

of spurious cycles are particularly stark when extracting medium-term cycles, for example, using the

HP filter with a smoothing parameter of 400,000. These results also hold for band-pass filters in general,

e.g., the Christiano and Fitzgerald (2003) filter. At a quarterly sampling frequency, extracting medium-

term cycles with the HP or with band-pass filters strongly emphasises a small frequency range that
1Systemic risk can, for example, be defined as “the risk that financial instability becomes so widespread that it impairs the

functioning of a financial system to the point where economic growth and welfare suffer materially” (European Central Bank,
2009, p. 134).
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cancels out other, possibly relevant, fluctuations. I show that this amplification strongly biases inference,

for example, when analysing the synchronisation of cycles across countries. Note that extracting cycles

at business cycle frequencies also distorts by amplifying specific frequencies, but to a much lesser extent

and, hence, leads to a smaller bias in inference.

In spite of evidence on spurious cycles, financial cycle facts, i.e., differing properties of financial

variables relative to GDP, are found to be robust to the method of detrending. Differences only become

marginal when considering the HP and BK filters.

Three main policy conclusions may be drawn from this study. First, caution needs to be exercised

when analysing extracted medium-term cycles, as for instance suggested in Basel III. The strong am-

plification of a small range of cycles cancels shorter-term frequencies that could be potentially relevant,

say, in signalling the build-up of imbalances prior to systemic banking crises or the abrupt risk material-

isation thereafter. Also if the frequency of financial crises increases, build-up phases of imbalances will

not be visible when focussing exclusively on a very specific medium-term frequency range. Hence, there

is a high risk that the recommended credit-to-GDP gap will misguide the setting of the CCyB rate. Sec-

ond, assuming the same HP smoothing parameter or BK frequency window across different countries,

means that relevant country-specific fluctuations are likely to be missed. While the US Basel credit-

to-GDP gap indicates imbalances before the savings and loan crisis and the global financial crisis, the

emphasis of such medium-term frequencies does not necessarily imply that Basel credit-to-GDP gaps

signal systemic banking crises for other countries as well – rather the opposite: the strong amplification

of medium-term cycles is prone to miss fluctuations of relevance for other countries. The same argu-

ment also holds for studies researching on business cycles that assume similar detrending specifications

across countries; however, the risk of missing relevant fluctuations is greater when considering medium-

term cycles. Third, differing empirical properties of financial and business cycle variables make a strong

case for macroprudential policy possibly taking a complementary role to other macroeconomic policies

that primarily target business cycles.
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1 INTRODUCTION

The analysis of the expansionary and contractionary phases, or cycles, in financial variables has become

critical to inform about the build-up of imbalances in the financial sector. One example is the Basel III

credit-to-GDP gap whose cycles guide the setting of countercyclical capital buffers (CCyBs), as the

different phases are claimed to inform about excess aggregate credit growth.2 Here, the identification

of cycles relies on the detrending of the credit-to-GDP ratio with a Hodrick and Prescott (1981, 1997)

filter using a smoothing parameter of 400,000 (HP (400000)), where 1,600 (HP (1600)) is the commonly

employed parameter, for instance, when detrending business cycle indicators. The large parameter is

motivated by results that fluctuations exceeding the duration of regular business cycles, or medium-term

cycles, are important for describing the movements in financial variables; for instance, in signalling

financial crises or when compared to business cycle indicators.3 Due to this reason, various detrending

approaches have already been considered for identifying the expansionary and contractionary phases in

financial variables.

The purpose of this paper is to explore the consequences of these different detrending approaches for

the analysis of the expansionary and contractionary phases in financial variables. Such analysis can be

motivated by previous studies in the context of business cycles. On the one hand, research has stressed

that HP and band-pass filters may generate spurious cycles, in which case, for instance, the duration of

expansionary and contractionary phases is strongly determined by a priori chosen parameters (Harvey

and Jaeger (1993); King and Rebelo (1993); Cogley and Nason (1995); A’Hearn and Woitek (2001);

Pederson (2001); Murray (2003); Hamilton (2017)). On the other hand, studies indicate that differ-

ent detrending procedures lead to different business cycles facts (Canova (1998a,b); Burnside (1998)).

Recent studies suggest that cycles in financial variables relative to cycles in GDP differ in amplitude,

duration, and synchronisation (e.g., Claessens, Kose and Terrones (2011, 2012), Aikman et al. (2015),

or Schüler et al. (2015, 2017)). The robustness of these financial cycle facts is critical to consistently

inform the use of macroprudential policies, as, for instance, the setting of the CCyBs.

My results indicate that the detrending of financial variables across G7 countries with HP and band-

pass filters leads to spurious cycles, resulting, for instance, in similar durations of cyclical phases across

countries and variables. This calls into question the “one specification of HP or band-pass filters fits

all countries” approach, as, for example, recommended in Basel III or when constructing output gaps

for several countries. For instance, while the HP (1600) filter may be considered appropriate for the

US, as I find that the length of the detrended component roughly coincides with the estimate of the

NBER’s business cycle dating committee (i.e., 6.3 versus 5.8 years), 6-year business cycles across all

G7 countries seems to be implausible, given different histories, laws, and institutions or as reported by
2See Basel Committee on Banking Supervision (2010). "Guidance for National Authorities Operating the Countercyclical

Capital Buffer", December.
3 See, for example, Borio and Lowe (2002, 2004) or Schularick and Taylor (2012); Drehmann, Borio and Tsatsaronis

(2012); Behn, Detken, Peltonen and Schudel (2013); Borio (2014); Hiebert, Klaus, Peltonen, Schüler and Welz (2014); Aik-
man, Haldane and Nelson (2015); Schüler, Hiebert and Peltonen (2015); Strohsal, Proaño and Wolters (2015a,b); Schüler,
Hiebert and Peltonen (2017); Rünstler and Vlekke (2016); Stremmel (2015); Galati, Hindrayanto, Koopman and Vlekke
(2016); Verona (2016); Anundson, Gerdrup, Hansen and Kragh-Sørensen (2016).
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empirical analyses (e.g., Jordà, Schularick and Taylor (2017)).4

Further, I find that the distortions of HP and band-pass filters are much stronger when extracting

medium-term cycles instead of business cycle fluctuations. Extracting medium-term cycles amplifies

the variance of cycles of duration around 20 to 30 years by a factor of up to 204, completely cancelling

out shorter-term fluctuations. Using the common business cycle specification of filters, the amplification

of certain cycles is only by a factor of up to 18. This result is important as medium-term filtering

is common practice (e.g., Borio and Lowe (2004); Drehmann et al. (2012); Behn et al. (2013); Borio

(2014); Meller and Metiu (2015, forthcoming); Stremmel (2015); Anundson et al. (2016); Bauer and

Granziera (2016)) and recommended under Basel III. The strong amplification cancels out shorter-

term frequencies, which are potentially relevant, say, in signalling the build-up of imbalances prior to

systemic banking crises or the abrupt risk materialisation thereafter.5 Also, if the frequency of financial

crises increases, build-up phases of imbalances will not be visible when focussing exclusively on a very

specific medium-term frequency range.

At last, in spite of spurious cycles I observe that financial cycle facts, i.e., the differing properties of

financial variables relative to GDP, are broadly robust with respect to several detrending procedures. For

HP and band-pass filters, differences to GDP become marginal due to spurious cycles. Robust financial

cycle facts substantiate the view of a possibly complementary role of macroprudential policies to other

macroeconomic policies that primarily target business cycles. Moreover, robust financial cycle facts

should serve to ground the validity of calibrated macro-financial models.

I begin this study by discussing examples that provide intuition on the consequences of spurious

medium-term cycles. The intuition is then substantiated by offering insights, first, from a theoretical

perspective in the frequency domain, and, second, from an empirical analysis of detrended financial and

business cycle variables. As methods of detrending, I use two specifications of difference filters (first

and fourth differences), two of the HP filter (smoothing parameter 1,600 and 400,000), and two of the

Baxter and King (1999) (BK) filter (frequency window 1.5 to 8 years and 8 to 30 years; denoted by

(1.5,8) and (8,30)) that are commonly applied in studies researching on business and financial cycles.

In the theoretical exercise, I consider their effects on trend and difference stationary (TS and DS) data

generating processes (DGPs) that have been discussed as major candidates for explaining the trends in

macroeconomic times series.6 In the empirical exercise, I apply these methods of detrending to credit,

credit-to-GDP, house prices, equity prices, and bond prices as well as to GDP of G7 countries from

1969Q1 until 2013Q4. After visual inspection of the (log-) levels and the detrended components, I

test for unit roots in financial and business cycle variables to provide arguments in favour of TS or DS

time series processes. The effects of filters are discussed by considering the amplitude and duration

of cycles in the detrended components through standard deviations, first-order autocorrelations, and

spectral densities. Further, I compare the synchronisation of the detrended components across countries
45.8 years refers to the NBER estimate of average cycle duration from 1945-2009 considering trough to trough.
5Studies on financial crises prediction accommodate the latter point, for instance, by excluding periods during and after

financial crises (see Behn et al. (2013); Anundson et al. (2016)).
6See Nelson and Plosser (1982); Perron (1989); Zivot and Andrews (1992); Ben-David and Papell (1995); Cheung and

Chinn (1997); Diebold and Senhadji (1996); Murray and Nelson (2000); Darne and Dieboldt (2004); Vougas (2007).
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on the basis of pairwise correlations and a novel spectral approach that I call dynamic power cohesion

(DPCoh). DPCoh complements an analysis of correlations across countries by, on the one hand, uncov-

ering the frequencies that add strongly to overall correlation, and on the other, discriminating between

frequencies that contribute positively and negatively to overall correlation.

I base the conclusion that HP and BK filters induce spurious cycles in financial variables (and GDP)

on the following: I show that the distortions of HP and BK filters under a DS process – the process, under

which it is known that HP and BK filters induce spurious cycles – are the ones found in the empirical

exercise. That is, assuming a DS process, theory indicates that a detrended component is characterised

by cycles of duration close to 7 years for HP (1600) and BK (1.5,8) filters, around 20 years for the BK

(8,30) filter, and close to 30 years for the HP (400000) filter. Further and without assuming any DGP,

my empirical exercise reveals that these cycle durations are closely matched by the actual detrended

components, irrespective of the country or variable. Clearly, given the different variables (credit, credit-

to-GDP, house prices, equity prices, bond prices, and GDP) but also the different histories, laws, and

institutions of G7 countries, similar-duration cycles reflect strong evidence of spurious cycles, even if

the true underlying DGP is unknown. Still, unit root tests favour a DS process, as the null hypothesis

of a unit root cannot be rejected in most variable cases. Next to similar-duration cycles, I also find

that the strong amplification of medium-term frequencies of medium-term filters under a DS process is

consistent with my empirical results.

The first and fourth difference filters do not suffer from such distortions. Applying these, there is

clear evidence of longer (or more persistent) cycles in credit, credit-to-GDP, house prices, and bond

prices than in GDP; e.g., around 15 years for credit versus 6 years for GDP, on average across G7

countries. Equity price cycles have rather similar durations to business cycles. Further, I find different

durations of cycles across countries and variables. In the case of HP and BK filters, the durations of

cycles are distorted towards the expected lengths given a DS time series. Here, longer financial cycles

are still apparent, but differences to GDP become marginal. For instance in case of the HP (1600)

filter, my results suggest that on average GDP cycles are 6.2 years while credit cycles 7.4 years. I show

that the synchronisation of cycles in credit, credit-to-GDP, and house prices is more disperse across

countries and, on average, weaker than that of cycles in GDP, but stronger for cycles in equity and

bond prices.Using DPCoh, I find that the weaker synchronisation of cycles in credit and credit-to-GDP

across countries relates to medium-term fluctuations. For some country pairs, these cycles are negatively

related, cancelling out positively related cycles at other frequencies and consequently inducing weaker

overall synchronisation. Finally, higher amplitude of financial variables relative to GDP is found for all

methods of detrending.

This paper contributes to research on spurious cycles by pointing out the strong amplification of

cycles around 20 to 30 years when extracting medium-term frequencies with HP and band-pass filters.

Further, I provide first cross-country evidence on spurious cycles using HP and band-pass filters, for a

series of variables. Here, the study by A’Hearn and Woitek (2001) is closest. The authors, as well, ex-

plore the possibility of spurious cycles in a cross-country setup. However, they do not find any evidence,

which is due to their yearly sampling frequency and the consideration of business cycle frequencies that
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only lead to small distortions.7 This paper also relates to a recent study by Hamilton (2017), in which

he argues that one should never use the HP filter, as among others, the typical economic time series is

best approximated by a random walk, i.e., a DS time series. My paper extends his findings, first, by

providing evidence that band-pass filters are subject to a similar criticism as the HP filter and, second,

by providing evidence that also for a broad set of countries his conjecture about the typical economic

times series appears to hold.

Additionally, this paper contributes to the emerging strand of literature analysing the properties

of financial variables, for instance, relative to the characteristics of business cycle variables, as e.g.,

Claessens et al. (2011, 2012) or Aikman et al. (2015). First, I show that financial cycle facts, i.e., the

characteristics of financial variables to similarly detrended GDP, are broadly robust with respect to sev-

eral filtering procedures. Second, my results provide evidence that the weak synchronisation of credit

and credit-to-GDP cycles (see Schüler et al. (2017)) is partially driven by opposing medium-term de-

velopments. This is essential to better understand reciprocities across borders in the short- and long-run

and, thus, potential secondary effects of country-specific macroprudential policies. Economically, the

existence of such opposing cycles could be related to different degrees of financial market liberalisa-

tion across countries, say, in terms of mortgage credit standards (see Favilukis, Kohn, Ludvigson and

Van Nieuwerburgh (2013)), which can be ascribed to medium-term developments. Finally, my findings

suggest that financial variables, except for bond prices, are rather characterised by stochastic trends.

Different natures of trends have direct implications not only for detrending, but also for the modelling

of such variables. That is, in the case of TS financial variables, shocks to the latter are small, infrequent,

and have only transitory effects. In contrast to this, in the case of DS financial variables, shocks to these

indicators are large, frequent, and highly persistent. This has major implications for the conduct and

evaluation of macroprudential policies. It is only in the case of a DS process that the modelling and

identification of the shocks becomes critical (see Murray and Nelson (2000)).

The structure of the paper is as follows: In Section 2, I briefly exemplify the consequences of

spurious cycles for empirical analyses. In Section 3, I introduce the methods of detrending and shed

light on their effects on TS and DS time series. Section 4 applies these filters to data of G7 countries,

starting with the visual inspection and formal unit root testing of the series, followed by a discussion

of amplitude, length, and finally synchronisation both from a time and frequency domain perspective.

Section 5 concludes.

2 CONSEQUENCES OF SPURIOUS MEDIUM-TERM CYCLES

To illustrate the consequences of spurious medium-term cycles, I provide two examples in this section.

First, I construct gaps using different HP filter specifications on simulated data, and second, I discuss
7For instance, researching cycles between 2 years, the minimum frequency available using yearly data, and 15 years, means

considering the region π to π
7.5

for yearly data and π/4 to π/30 for quarterly data. The latter region, i.e., using quarterly data,
is located closer to the trend (closer to frequency 0) that is more prone to the distortions discussed in the paper. Specifically, as
can be seen in the Figure 2 of A’Hearn and Woitek (2001, p. 327), the distortion visible in the power transfer function is much
more modest than the ones discussed in this paper, which is related to the sampling frequency. The peak of their power transfer
function of the HP (100) filter is around 3.2, while it is around 204 for the HP (400000). For their BK filter (K = 6) the peak
of the power transfer function is below 1.2, while 120 for the BK (8,30) filter (see Section 3).
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the consequences of spurious medium-term cycles for the credit-to-GDP gap in the case of the US and

France. In both examples, I discuss the distortions of filters that, one the one hand, are in line with the

empirical results of this paper and, on the other hand, can be motivated under a DS DGP.

2.1 Simulated data

The HP-filtered gaps extracted from the simulated data and the true gap itself are shown in Figure 1.

The upper panel depicts the true gap, the lower left panel illustrates the HP (1600) gap (together with the

true gap), and the lower right panel shows the HP (400000) gap (along with the true and the HP (1600)

gap). The data is simulated from an autoregressive model fitted to the changes in the US credit-to-GDP

ratio to capture realistic dynamics of financial variables in the true gap. Thus, in this exercise assume

that the US credit-to-GDP ratio is a difference stationary process. I simulate 180 observations, which is

similar to the sample period available for this paper.8

50 100 150

-0.01

0

0.01

0.02

(a) True gap

50 100 150

-0.02

0

0.02

(b) HP (1600) gap

50 100 150
-0.1

0

0.1

(c) HP (400000) gap

Figure 1: Simulated data
Notes: The HP-filtered gaps are obtained by detrending the level of the simulated data with smoothing parameters 1,600 and 400,000 respec-
tively. I simulate 180 observations; similar to the sample period available for this study. For further details, please see Appendix A.1.

The amplification of specific cycle frequencies (spurious cycles) can be noticed via the relative

increase in the variance of the HP filtered gaps, where the HP (400000) gap has the highest variance

and the true gap the lowest variance. For instance, the overall variance of the HP (400000) gap is more

than 18 times larger than the overall variance of the HP (1600) gap. This is broadly in line with the

theory that predicts a maximum factor of amplification of a small frequency range of roughly 13 for the

HP (1600) filter and about 204 for the HP (400000) filter. In the first case, cycles of length around 30

observations are most strongly amplified and in the second case frequencies close to 120 observations

are most strongly amplified. Note that the longest cycle observed for the HP (400000) gap is actually

around 80 observations, indicating that this reflects the longest duration cycle in the simulated data.

As Figure 1 suggests, the amplification implies that shorter frequencies become relatively muted,

leading to distortions that are stronger when considering the HP (400000) filter. Or, put differently,
8See Appendix A.1 for further details on the simulation procedure.
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while shorter-term movements of the true gap are to some degree still observed in the HP (1600) gap,

they are almost completely muted in the HP (400000) gap.

The true gap, in this example, is sometimes also referred to as a cycle in growth rates (see Harding

and Pagan (2005)). Such a term might suggest that there exists a (possibly not perfect) mapping from

the HP-filtered gaps to the true gap via growth rates. That is, a positive (possibly constant) true gap

would imply a steady expansion of the HP-filtered gaps. Of course, this is correct, albeit irrelevant if

the true DGP is DS. Under a DS DGP, the HP filter amplifies certain frequencies of the true fluctuations

that are determined by the selected smoothing parameter. This creates a spurious gap, i.e., artificial

expansionary and contractionary periods, from which economists aim to infer, for example, about the

build-up of imbalances. The derived gaps, however, are entirely artificial and merely reflect the a priori

specification of the filter. As is apparent from this example, the HP (1600) and HP (400000) gaps

suggest different periods of positive and negative deviations from trend, leading, in a real world setting,

to differing regulatory responses or conclusions, which in both cases would not be in line with the true

gap.

2.2 Credit-to-GDP gap: US and France

Next, consider the real-time Basel III credit-to-GDP gaps of the US and France portrayed in Figure 2

along with the starting dates (black vertical lines) of systemic banking crises as defined by Laeven and

Valencia (2012). The two examples highlight well the negative consequences of spurious medium-term

cycles, as movements in the latter gaps have direct implications for the setting of CCyBs.9

70 74 78 82 86 90 94 98 02 06 10

-2

0

2

(a) US

70 74 78 82 86 90 94 98 02 06 10

-1

0

1

2

(b) France

Figure 2: Credit-to-GDP gap
Notes: Credit-to-GDP gaps are constructed using an one-sided HP filter with smoothing parameter 400,000. Series are standardised to unit
variance. Grey shaded areas are NBER dates of recession. Black vertical lines indicate the onset of systemic banking crises as defined by
Laeven and Valencia (2012).

While both country gaps are positive in the run-up to the GFC, which would support the indicators’

use to inform the setting of CCyBs – as the latter should have also been positive to limit the build-up of

imbalances through excess aggregate credit growth –, the movements during and after the GFC indicate

well the problems related to the amplification of medium-duration cycles. First, the US gap does not

indicate the materialisation of systemic risk immediately after the shock hit the economy, but takes until

the end of 2009 to close. Second, and even more dramatically, the French gap increases after the shock
9Note that, throughout the study, I analyse the effects using a two-sided HP filter, i.e., employing all sample information.

The Basel III gaps, however, are constructed exploiting a one-sided, i.e., asymmetric, HP filter. I discuss differences between
the two approaches for the simulated data in Appendix A.1 and for the credit-to-GDP gaps of the G-7 countries in Section 4.1.
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hit the French economy in 2008, wrongly suggesting that the CCyB should have been raised over that

period. However, note the two small downturns visible around 2008 and 2009. It can be argued that

these reflect relevant cyclical fluctuations for informing the use of the CCyB, although they are masked

by the amplified medium-term cycle.

Thus, while the parameter of 400,000 leads to a gap for the US that peaks before the GFC and also

before the saving and loans crisis in 1988, the gap of France does not indicate any strong imbalances

prior to the GFC. Hence, due to the strong amplification of medium-term frequencies over shorter-term

ones, the extracted gaps are at high risk of not being relevant to the policy task or research question at

hand. These observations call into question the common assumption of “one smoothing parameter – or

one frequency window in the case of band-pass filters – fits all countries” approach, particularly when

considering cycles in the medium-term.10

3 DETRENDING METHODS AND THEIR EFFECTS ON TREND AND

DIFFERENCE STATIONARY TIME SERIES

In the business cycle context it is common practice to decompose real variables, such as output, into a

secular (or trend) component and a stationary, possibly cyclical, component. With respect to financial

variables, the same approach has been taken. For instance, researchers and policy makers aim at identi-

fying a credit gap measure that should indicate the build-up of excesses or imbalances in order to inform

countercyclical macroprudential policies.

In these exercises, a stationary component is identified by deviations from a non-stationary secular

component. A non-stationary secular component in credit (possibly over GDP) may arise, for example,

from a continued financial deepening or integration that allows an even further expansion of the credit

volume, i.e., reflecting developments with permanent effects. The stationary component is regarded as

the outcome of transitory, possibly persistent, shocks within an economy, such as phases of high risk

aversion triggered by certain financial shocks. It is possible to imagine that shocks to the stationary

component may also affect the trend, leading to permanent effects of shocks.

One way to think of this is to decompose (the log of) credit or any other trending series, say yt, into

the sum of such trend and stationary component, for instance, as

yt = τt + ψt, (1)

where t = 1, . . . , T , τt reflects a non-stationary trend and ψt a stationary, non-deterministic, and

possibly cyclical component. In this framework, ψt can be referred to as the gap, meaning that a

permanent component, τt, is removed from yt; as is the case with the credit-to-GDP or output gap.

To analyse the effects of filters on ψt, I consider two data generating processes (DGPs) that have

gained prominence in discussions about the trend, i.e., τt, in output (see, for instance, Nelson and

Plosser (1982)): trend (TS) and difference (DS) stationary DGPs. Both can be nested in Equation (1)
10Of course, due to country specificities the credit-to-GDP gap could possibly not be the relevant indicator for informing the

CCyB for France. However, different transformations of this indicator (see Appendix A.2.1) suggest the existence of relevant
movements that signal the downturn during the GFC.
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and be formalised as

TS: yt = α+ βt+ ψt (2)

DS: yt = α+ yt−1 + ψt, (3)

where α is an intercept (or possibly a drift parameter in Equation (3)), t a deterministic trend and β

a slope coefficient of the trend. In the TS case, movements in ψt do not affect the trend. In contrast, in

the DS case, movements in ψt almost completely determine the evolution of the trend.

In the framework proposed by Harding and Pagan (2005), ψt in Equation (2), is called a growth

cycle and ψt in Equation (3) is referred to as a cycle in growth rates. The representation in Equation (1)

indicates that such a distinction is not clear-cut, which is acknowledged by Harding and Pagan (2005),

who regard Equation (3) as a special case of growth cycles. Clearly, the results of this section are

sensitive to the assumptions made on the DGP.11

While both DGPs give rise to the “typical spectral shape” discussed by Granger (1966) when esti-

mating the spectral density of yt, the effects of filters on ψt vary depending on the two DGPs. Depending

on the two DGPs, methods may generate spurious cycles in ψt by amplifying certain cycle frequencies

relative to others, thus biasing the original stationary component.

Below, I first delineate the filters considered and, subsequently, discuss their effects on TS and DS

time series. Some final remarks conclude this section.

3.1 Methods of detrending

I consider three different filters and, for each, two different specifications. The first is the difference

filter, the second the Hodrick and Prescott (1981, 1997) (HP) filter, and the third the Baxter and King

(1999) (BK) filter. The analysis of different specifications is explained by the different detrending

approaches adopted by researchers and policy makers when analysing business and financial cycles.

Standard filters in the business cycle context (using a quarterly sampling frequency) are the first dif-

ference (∆) filter, the HP filter with a smoothing parameter of 1,600 (HP (1600)), and the BK filter

extracting frequencies from 1.5 to 8 years (BK (1.5,8)).12 The fourth difference (∆4) filter, the HP filter

with a smoothing parameter of 400,000 (HP (400000)), and the BK filter extracting cycles of duration

8 to 30 years (BK (8,30)) have been recently advocated in the financial cycle context aiming to extract

medium-term cycles. For instance, the ∆4 filter has been employed by Drehmann et al. (2012), Strohsal

et al. (2015a), and Verona (2016). The HP (400000) is recommended by the Basel III regulations for

constructing the credit-to-GDP gap and is used, for instance, by Anundson et al. (2016). Focussing on

cycles between 8 and 30 years by means of a band-pass filter, is suggested by Drehmann et al. (2012)

and, for instance, used by Meller and Metiu (2015, forthcoming).

Below, let ξt denote the detrended component of yt, i.e., the estimate of ψt.
11For instance, using the classic growth cycle definition, Murray (2003) shows that if yt is driven by an integrated trend, i.e.,

τt = α+ τt−1 + ζt with ζt stationary and ζt uncorrelated with ψt, implies that spurious cycles emerge as the first difference
of the trend is passed through the filter. Here, the properties of the filtered series are strongly determined by the trend in the
unfiltered series. In this framework spurious cycles emerge due to an amplification of specific frequencies in ζt and not ψt.

12The ∆ filter has been used by Schularick and Taylor (2012), Aikman et al. (2015), and Schüler et al. (2015, 2017) in the
financial cycle context.
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Two specifications of the difference filter

I analyse both the first and fourth difference filter. Let ∆i = (1− Li). The two filters are

ξ∆
t = ∆yt = (1− L)yt = yt − yt−1 and (4)

ξ∆4

t = ∆4yt = (1− L4)yt = yt − yt−4. (5)

Two specifications of the Hodrick and Prescott (1981, 1997) filter

I consider two smoothing parameters: λ = 1,600 and λ = 400,000. The smoothing parameter, λ,

controls the importance of the penalty term attached to the degree of smoothness of the extracted trend.

A parameter of 400,000 leads to a much smoother trend than 1,600.

Most commonly the HP filter is written in the following form:

min
[τt]Tt=1

[
T∑
t=1

(yt − τt)2 + λ

T∑
t=2

((τt+1 − τt)− (τt − τt−1))2

]
, λ > 0. (6)

For the analysis of this paper, however, it is convenient to rewrite the latter minimisation problem into

a form that directly yields the detrended observations, ξt (see, for example, King and Rebelo (1993)):

ξ
HP(λ)
t =

[
(1− L)2(1− L−1)2

(1− L)2(1− L−1)2 + 1/λ

]
yt. (7)

Two specifications of the Baxter and King (1999) filter

I use the BK filter to extract two different frequency bands: first, disentangling fluctuations between 1.5

and eight years and, second, fluctuations between eight and 30 years.

The extracted component is obtained through

ξ
BK(π/(2ω1),π/(2ω2))
t = aK(L)yt, (8)

where (π/(2ω1), π/(2ω2)) denotes the frequency band in years with π/(2ω1) < π/(2ω2), aK(L) =∑K
k=−K akL

k is a symmetric lag polynomial, and ak = a−k a time-invariant symmetric linear weight.

In contrast to the ideal band-pass filter that uses an infinite number of weights, the weights of the BK

filter are truncated at lag K. Due to this, Baxter and King (1999) introduce a normalising constant such

that aK(1) =
∑K

k=−K ak = 0, which implies that the filter may neglect long-run trends. More formally,

ak = bk + θ, (9)

where θ is the normalising constant and bk the time invariant linear weight of the band-pass filter. θ

is defined to be (−
∑K

k=−K bk)/(2K + 1). Further,

bk =


ω1 − ω2

π
if k = 0

sin(ω1k)− sin(ω2k)

πk
if k 6= 0

(10)

For fixed K, the researcher defines the frequency band that she would like to consider by choosing

ω1 > ω2. Using a quarterly sampling frequency, filtering frequencies between 1.5 and 8 years implies an
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ω1 = π/2·(1.5)−1 and an ω2 = π/2·(8)−1; 8 to 30 years an ω1 = π/2·(8)−1 and an ω2 = π/2·(30)−1.

For the two specifications, I choose K = 40 which is larger than the parameter that has been suggested

by Baxter and King (1999) for analysing business cycles (K = 12), but has been considered by Murray

(2003) for the latter purpose. The filter captures medium-term cycles more precisely when using more

lags.

3.2 The filters’ effects on trend and difference stationary time series

To discuss the effects of the filters on the two data generating processes, I first introduce the concept of

power transfer functions (PTFs) which can be used to describe how filtering modifies certain frequencies

of a stationary time series and can, thus, indicate induced cycles, i.e., specific frequencies that are

amplified relative to others.13

3.2.1 The power transfer function and induced cycles

Assume that ψt is a stationary stochastic process with an autocovariance generating function defined as

gψ(z) ≡
∑∞

t=−∞ γtz
t, where z denotes a complex scalar and γt the autocovariances. γ0 refers to the

variance of ψt. The spectral density of ψt is then defined as

Sψ(ω) ≡ 1

2π
gψ(e−iω), (11)

where i is the imaginary unit and ω ∈ [−π, π] the cycle frequency in radians. Filtering ψt with a

time-invariant filter that has absolutely summable weights, say ξt =
∑∞

j=−∞ hjψt−j , implies that the

spectral density is altered via a transfer function. This transfer function can be denoted by h(e−iω) and

the exact relation between the spectral density of ψt and the spectral density of the filtered series is

Sξ(ω) = H(ω) · Sψ(ω), (12)

where H(ω) ≡ |h(e−iω)|2 is referred to as the power transfer function. It completely describes the

change in the relative importance of the cyclical components in ψt.14 If H(ω) > 1, the amplitude of

the cycle component ω of ψt is increased. In the case H(ω) < 1, the amplitude of the respective cycle

component is dampened. Such amplification or dampening of frequencies in the stationary component

ψt gives rise to spurious or artificial cycles.

Note that, while ψt is stationary, the original time series, yt, might not be. In this case, i.e., when the

filter is applied to a trending variable, the PTF describing the change of cycle frequencies for ψt might

differ from the PTF of the filter, depending on the source of nonstationarity. This is discussed below.
13All frequency domain results are interpreted assuming quarterly sampling frequency, which is the frequency of variables

used in this study.
14The transfer function can be decomposed into gain and phase, where the square of the gain is the power transfer function,

i.e., h(e−iω) = |h(e−iω)|e−iΘ(ω). Θ(ω) refers to the phase. Note that for symmetric linear filters, such as the HP filter the
phase is zero. For the first difference filter, it is not. Nonetheless, I refrain from a discussion of phase, as it is not relevant to
the analysis of this paper. Changes in the importance of frequencies are fully described by the power transfer function and,
for instance, the synchronisation of cycles across countries is analysed using the same filter across countries, in which case the
same phase shift applies to all variables.
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3.2.2 The filters’ effects on trend stationary time series

In the trend stationary case and applying the filters considered in this study on yt, the linear deterministic

trend vanishes from the spectrum of the filtered series, ξt, that is

Sξ(ω) = H(ω)Sy(ω) = H(ω)Sψ(ω). (13)

This means that in the case of trend stationary data, the PTFs describing the effects of the ∆ and the

∆4 filter on ψt are

H∆(ω) = |(1− e−iω)|2 = 2(1− cos(ω)) (14)

H∆4(ω) = 2(1− cos(4ω)). (15)

The PTFs capturing the effects of the HP filters with λ = 1, 600 and λ = 400, 000 on ψt can be

derived from

HHP(λ)(ω) =

[
4(1− cos(ω))2

4(1− cos(ω))2 + 1/λ

]2

. (16)

For the BK filters with frequency windows (1.5,8) and (8,30) respectively, the power transfer func-

tion may be obtained from the lag-polynomial and is

HBK(π/(2ω1),π/(2ω2))(ω) = |aK(e−iω)|2. (17)

All six power transfer functions are depicted in Figure 3, where the y-axis shows the squared gain

induced by each filter across frequencies and the x-axis the cycle length in radians. The conversion

to cycle duration in years using quarterly data is π/(2ω), where ω is the value of the x-axis, e.g.,

π/(2π) = 0.5 years, which is the shortest cycle duration that can be measured using quarterly data.

Note that the scale of time is nonlinear, i.e., the closer to 0 radians the larger the increase in cycle length

is. To ease the reading of graphs showing the frequency domain, I mark business cycle frequencies

(1.5-8 years) in blue and medium-term cycle periods (8-30 years) in purple. The latter area is argued to

be important for the financial cycle.

In the case of trend stationary data, H∆(ω) dampens frequencies of ψt which are actually suspected

to drive business and financial cycles, as its gain is below one, until a cycle length of 1.5 years. Further,

high-frequency components, i.e. cycles of duration less than 1.5 years, are intensified. It cancels cycles

of infinite duration, as the squared gain is zero at frequency 0. H∆4(ω) removes, as well, not only

cycles of infinite duration, but also yearly cycles in the case of quarterly data, i.e., at frequency π/2,

and, thus acts as a seasonal filter. Further and in contrast to H∆(ω), it mutes cycles to a lesser extent

in the medium term and business cycle region. Moreover, it amplifies some parts of business cycle

frequencies. H∆4(ω) also amplifies shorter-term cycles, of less than one year’s duration, with a peak

amplification at 2/3 years or 3π/4 radians.

In this setting, the HP filter removes low-frequency cycles of the cyclical component, ψt, and leaves

the others unchanged, meaning it has a PTF of 1. The two HP filters differ in that the filter with a λ of

400,000 leaves longer-term cycles in the cyclical component until a duration of around 30 years. This
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Figure 3: (Trend) stationary time series: power transfer functions, H(ω)
Notes: The blue area marks business cycle frequencies (1.5-8 years) and the purple area medium-term cycles (8-30 years) assuming quarterly
data. PTF denotes the power transfer function. Results of the BK filter use K = 40.

contrasts with the cyclical component obtained by the HP filter with a λ of 1,600 contains cycles of up

to roughly 8 years.

HBK(π/(2ω1),π/(2ω2))(ω) with K = 40 approximates a gain of one for the frequency band specified.

In black, I show the specification that leaves frequencies between 1.5 and 8 years in ψt and in red the

specification that is supposed to leave medium-term cycles in the stationary component. In the case of

the latter, there is a marginal amplification of cycles of around 13 years’ duration in the region where

the PTF peaks at a value greater than one.

In sum, given TS time series, both difference filters induce cycles in ψt. The ∆ filter amplifies

cycles at high frequencies, but not at business and financial cycle frequencies. The ∆4 filter amplifies

cycles at around 2 and 2/3 years, with the former implying induced cycles in the business cycle range.

In contrast, the HP and BK filters represent close approximations to the ideal band-pass filters when

considering their effects on the stationary component, ψt, for which the gain of the PTF is around one.

The HP filter with a smoothing parameter of 400,000 implies that longer-term cycles are left in the

stationary component. Both specifications of the BK filter emphasise cycles of desired length in ψt.

3.2.3 The filters’ effects on difference stationary time series

In the difference stationary case, the effects of the filters on ψt change. They operate as a two-step

linear filter, in which case yt, in a first step, is differenced to render the series stationary and, in a second

step, smoothed with the remainder of the filter. Remainder means that the application of such filters in

this setting “uses up” one difference operator (see, for example, Cogley and Nason (1995) and Murray

(2003)). Thus, the transfer function of interest, say J(ω), which describes the effects on the stationary

component ψt, can be derived by

Sξ(ω) = H(ω)Sy(ω) = J(ω)S∆y(ω) = J(ω)Sψ(ω), (18)

where J(ω) = H(ω)/H∆(ω).
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The J(ω)s for the first and fourth difference filters are

J∆(ω) = H∆(ω)[H∆(ω)]−1 = 1 and (19)

J∆4(ω) = H∆4(ω)[H∆(ω)]−1 =
1− cos(4ω)

1− cos(ω)
, (20)

for the HP filter

JHP(λ)(ω) = HHP(λ)(ω)[H∆(ω)]−1 =
8(1− cos(ω))3

(1/λ+ 4(1− cos(ω))2)2
, (21)

and for the BK filter

JBK(π/(2ω1),π/(2ω2))(ω) = HBK(π/(2ω1),π/(2ω2))(ω)[H∆(ω)]−1 =
|aK(e−iω)|2

1− cos(ω)
. (22)
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Figure 4: Difference stationary time series: power transfer functions, J(ω)
Notes: The blue area marks business cycle frequencies (1.5-8 years) and the purple area medium-term cycles (8-30 years) assuming quarterly
data.

Figure 19 depicts these PTFs. Observe that the scales of the y-axes differ for each of the five

figures. J∆4(ω) amplifies cycles of ψt in the business cycle and, more importantly, in the financial cycle

region. Thus, after removing the unit root, the ∆4 filter induces cycles in ψt at longer-term frequencies;

however, there is no peak in the PTF, which means that the filter emphasises a range of longer-term

cycles and not a specific one. Through the emphasis of longer-term cycles, shorter-term frequencies are
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almost completely muted. In contrast, the ∆ filter does not change the spectrum of the the stationary

component, ψt. The PTF is 1 for all frequencies. Assuming a DS process, the first difference filter thus

removes, first, the source of nonstationarity and, then, leaves the stationary component unaltered.15

In the case of the two J(ω)s of the HP filter, both PTFs peak and therefore magnify specific fre-

quencies. The higher the smoothing parameter is, the more strongly are cycles in ψt magnified – up

to around 13 times employing a parameter of 1,600 and up to roughly 204 times using a parameter of

400,000. The HP filter may therefore introduce spurious cycles into the stationary component, i.e., em-

phasise cycles that are present in the data but may not be important relative to other fluctuations present

in the stationary component or not of relevance to the research question at hand. Note that the frequency

that is emphasised can be derived from ωmax = arccos(1 −
√

0.75/λ). Accordingly, in the case of a

λ = 1,600, cycles of lengths around 7.5 years in ψt are emphasised, whereas for λ = 400,000 cycles of

lengths around 30 years are emphasised.

Similarly, the two J(ω)s of the BK filters peak and, thus, emphasise specific cycles in ψt. The filter

(1.5,8) magnifies durations of around 6.2 years with a factor of around 18 and the (8,30) of around 18

years with a factor of approximately 120. In contrast to the HP filter, the BK filter cancels all shorter-

term frequencies that have not been included in the specification, i.e., below 1.5 and below 8 years

respectively.

In sum, given a DS process, the HP filter may induce cycles of around 7.5 and 30 years in the

stationary component for a smoothing parameter of 1,600 and 400,000 respectively. The BK filters

emphasise frequencies of roughly 6.2 and 18 years’ duration in the stationary component when filtering

(1.5,8) and (8,30) years respectively. The ∆4 filter amplifies longer-term cycles, whereas the ∆ filter

does not alter the cyclical component at all. These insights highlight the importance of the a priori

choice of the HP smoothing parameter or the BK frequency window for the detrending of DS time

series as they lead to a focus on specific fluctuations of the cyclical component.

3.2.4 Some remarks

It is worth noting that the effects of filters on DS time series have broad implications, that is, Cogley

and Nason (1995) show that the effects of filters on near unit root trend stationary time series are similar

to the effects on difference stationary time series.

Further, Pederson (2001) points out that effects of the HP and BK filters on DS time series need to

be discriminated from the Slutzky effect. The Slutzky effect is defined as distortions that occur when

filtering stationary data. Or, put differently, the PTFs of the filters themselves show peaks and, thus,

induce spurious cycles by emphasising specific frequencies relative to others; as is with the difference

filters. This is not the case for the HP and BK filters, which both approximate an ideal band-pass filter

for the specified frequency range. Even though the distortions of these filters do not coincide with the

Slutzky effect, their implications are important, especially when considering medium-term fluctuations.
15Note, the ∆ filter is the non-distorting filter in this application, as I assume a first difference stationary process in this

exercise (see Equation (3)). This is in line with Hamilton (2017)’s argument that a typical economic time series is best
approximated by a random walk and by the empirical evidence provided in this paper. Clearly, if the true DGP would be a ∆4

process the fourth difference filter would be best suited.
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At last, the exposition in this section emphasises the importance of knowing the true DGP for choos-

ing the “correct” filter, i.e., the one that either minimally distorts the cyclical properties of the underlying

series or extracts the fluctuations of interest. However, as the true DGP cannot be known in practice,

the following empirical exercise aims to provide evidence on distortions that filters induce in actual

economic time series, without the need to assume a specific DGP.

4 FINANCIAL CYCLE FACTS ACROSS G7 COUNTRIES

Having shed light on the theoretical properties of filters, I now turn to discuss the effects of applying

them to financial and business cycle variables of G7 countries. To begin with, I introduce the data,

depict their (log-)levels and detrended components, and formally test whether there is evidence against

the hypothesis of a unit root with possible drift (DS) using the alternative hypothesis of a TS DGP.

Subsequently, I examine the amplitude and length of financial cycle variables relative to business cycles.

Thereafter, I reflect on the synchronisation of financial cycle variables across countries, also contrasting

with the synchronisation of business cycles. In both exercises, I first explore a time and second a

frequency domain perspective. I employ both perspectives as each highlights different features of the

detrended components.

4.1 Data and some notes on filtering

I use the dataset by Schüler et al. (2017) which includes quarterly data on credit, house prices, equity

prices, and bond prices, augmented by the credit-to-GDP ratio. This set of variables reflects indicators

measuring financial cycles. The representative business cycle variable is GDP. The dataset covers G7

countries and spans the period from 1969Q1 to 2013Q4.

Credit, house prices, and credit-to-GDP reflect time series from the Bank of International Settle-

ments. Credit is total credit, and house prices are measured through residential property prices. For

equity prices, the main economic indicators database from the OECD is employed, except for the US,

in which case I use the S&P 500 index that is the standard variable in academic studies researching on

US equity markets. Corporate bond yields are taken from Global Financial Data and Haver Analytics.

GDP is also retrieved from the OECD main economic indicators database.16 All variables are in real

terms, log-transformed (except for credit-to-GDP), and deflated via the CPI index of the OECD main

economic indicators database where necessary. Seasonal adjustment is performed using Census X-12.

Note that bond yields are transformed to reflect bond prices as suggested in Schüler et al. (2017),

i.e., pb,t = 1/(1 + yb,t), where pb,t denotes the price and yb,t is the current yield of the respective bond

at time t. Such transformation assures, on the one hand, an interpretation of this variable similar to the

other asset price series considered and, on the other, allows for a similar process of deflating, which is

important when comparing cyclical structures across indicators.17

16For exact details please refer to the Appendix of Schüler et al. (2017)
17The other option is to construct yearly inflation from the CPI indices and deduct those from the yields. However, as

highlighted in the previous section, the year-on-year filter runs the risk of emphasising specific cycles and inducing phase
shifts.
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Before proceeding with the analysis, it is useful to note that I employ the HP and BK filters using

whole sample information.18 However, the credit-to-GDP gap, as defined in the Basel regulations, is

actually constructed via a one-sided HP filter, i.e., an HP filter that is applied to an expanding sample.

This implies that only current and past information is employed. Of course, this is due to the restriction

that policy makers and regulators need to act in real time. For this study, I assume that all sample

information is available. A comparison of both approaches, i.e., constructing the credit-to-GDP gap

using a two- versus a one-sided HP filter, is given in Appendix A.2.2. Summarising, the dynamics of

the detrended series do not differ strongly. Most remarkable differences occur at the beginning of the

sample, when only few observations are available for the one-sided filter. In the case of France or Italy,

for instance, this leads to the outcome that the one-sided filtered series seems to be trending, possibly

biasing the analysis of the stationary component. Overall, the comparison suggests that the implications

derived from the two-sided filter carry over closely to the one-sided filter.

Finally, I compute the detrended component of the BK filter by extending the first and last observa-

tions by their respective value for several quarters, such that the sample period common to all filters is

longest.

4.1.1 Visual inspection of levels and detrended components
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Figure 5: US’ financial and business cycle indicators
Notes: Grey area depicts NBER dates of recessions. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven
and Valencia (2012). c denotes total credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.

Figure 5 depicts the US data in (log-) levels and Figure 6 shows the detrended components obtained

via the three filters as discussed in Section 3. Note that, for ease of exposition, the detrended series are

standardised to unit variance. The remaining country charts are placed in Appendix A.2.1.

Considering the time series graphs for the US, several conclusions can be drawn. With respect to the

levels, visual inspection suggests that all variables show trending behaviour. For equity prices (pe) this

evidence can be argued to be weakest, reminiscent of a random walk without drift. Further, while the

slope of the potential trends or drifts are positive for most series, these would be expected to turn out

negative for bond prices (pb).19

18While the HP and BK filters are employed using whole sample information, the difference filters – by construction,
asymmetric filters – only use information at time period t together with t− 1 or t− 4.

19Clearly, ever declining real bond prices would be a puzzling phenomenon. As this study does not focus on finding
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Figure 6: Detrended US’ financial and business cycle indicators: ∆, HP (1600), BK (1.5,8) filter in
black, ∆4, HP (400000), and BK (8,30) filter in red

Notes: Grey area depicts NBER dates of recessions. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven
and Valencia (2012). Series are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the left hand
panel. c denotes total credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output. The BK filter is specified
with K = 40 and the cycles are computed by extending the first and last observations by their respective value for several quarters, such that
the sample period common to all filters is longest.

Comparing the detrended components obtained with the ∆ to those derived with the ∆4 filter (see

Figure 6) leads to the conclusion that, on the one hand, short-term movements are muted using the ∆4

filter and, on the other, a slight phase shift is induced, i.e., turning points occur later for the ∆4 treated

version of each series. However, the lower frequency movements in both series seem to be similar.

Looking at the HP detrended series suggests that each specification of the filter leads to a different

cyclical pattern in each variable case. As expected, the HP filter with a λ of 400,000 captures longer-

term cycles than the filter with a λ of 1,600, but also mutes shorter-term fluctuations. Further, both

HP-filtered series look different from the fluctuations identified via the difference filters.

arguments for different theoretical mechanisms that generate the trending behaviour, I refrain from a further discussion along
these lines.
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The two BK-filtered series, similar to the case of the HP filter, show different cyclical patterns. Of

course, this can be argued to be an artefact of the specifications, as the filter was required to separate

different cycle frequencies.

Interestingly, the BK (1.5,8)-filtered series resemble the HP (1600)-filtered series and the BK (8,30)-

filtered series resemble HP (400000) cycles, even though the BK filters completely mute shorter-term

fluctuations, for instance, in the case of the BK (8,30) filter, cycles shorter than eight years. Somehow,

this is reflected in a number of minor fluctuations in the HP-filtered series. Still, while cycles resemble

each other, they are not the same. For instance, credit reaches one of its historic peaks for both HP-

filtered series before the post-90 recession. In contrast, the BK (1.5,8)-filtered series only shows a

marginal deviation from trend.

Finally, note that the HP (400000) detrended component of equity prices and GDP contain by far

more shorter-term frequencies than in any other variable’s case.

In sum, all level series can be argued to show a trending behavior. The two difference filters produce

rather similar results when focussing on longer-term movements. Shorter-term movements are muted

using the ∆4 filter. Both HP and both BK filter calibrations deliver different cycles for all variables,

which are also different from the cycles obtained using the difference filters. Nonetheless, there is some

similarity between the HP and BK filter when comparing the cycles for the shorter-term frequencies, on

the one hand, and comparing the fluctuations of the longer-term cycles, on the other. These observations

are broadly consistent across G7 countries. It is only in the case of Japan that the trends in certain

variables are characterised by breaks, e.g., for house prices (ph), in which case no clear trend behaviour

is visible.

4.1.2 Are financial cycle variables trend or difference stationary?

This section explores for each variable whether it is possible to reject the null of unit root with drift

against the alternative of trend stationarity, which, as indicated, has important implications for distor-

tions induced by filters. More precisely, I use the following version of the augmented Dickey Fuller

test: under the null the series has a unit root with drift, i.e.,

yt = α+ yt−1 +

p∑
i=1

θi∆yt−i + ηt (23)

where the p-lagged differences account for serial correlation and ηt is an iid normal error. Under the

alternative, I specify the model as

yt = α+ βt+ ρyt−1 +

p∑
i=1

θi∆yt−i + ηt. (24)

Thus, I test the joint restriction that β = 0 and ρ = 1 using an F -test.20 Clearly, such a test cannot

completely determine whether a time series follows a stochastic or deterministic trend. First, the test
20Note this test is similar to the test used in Murray and Nelson (2000) who explore whether the trend in US GDP is

deterministic or stochastic. The current test, however, differs in that I specify the DGP under the null to be a unit root with
linear drift. Murray and Nelson (2000) allow in their specification for a unit root with quadratic drift, which I argue does not
reflect the trend observed in the data just discussed.
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suffers from low power against local alternatives. Second, breaks in the trend can lead to an under-

rejection of the null that could possibly be a factor, for instance, in the case of Japan. Nonetheless, the

current formulation of the ADF test gives initial evidence for one of the two data generating processes

which is augmented by details on the spectral densities of the detrended components in the following

parts.

Table 1: Augmented Dickey Fuller F -test

Variable AR Test Nominal Variable AR Test Nominal
Country lag statistic p-value Country lag statistic p-value

Credit (c) Equity prices (pe)
Canada 2 5.45 0.097 Canada 1 6.29 0.053
Germany 1 13.54 0.001 Germany 1 5.87 0.072
France 1 6.53 0.045 France 1 3.84 0.325
Italy 2 1.88 0.778 Italy 1 4.02 0.285
Japan 2 3.85 0.323 Japan 1 2.40 0.658
UK 3 1.64 0.840 UK 1 3.91 0.310
US 2 5.06 0.128 US 0 3.95 0.300
Credit-to-GDP (c/q) Bond prices (pb)
Canada 1 2.59 0.615 Canada 1 6.32 0.052
Germany 1 2.15 0.716 Germany 1 9.79 0.004
France 1 1.60 0.850 France 1 7.36 0.024
Italy 1 4.26 0.229 Italy 1 7.36 0.024
Japan 2 2.12 0.722 Japan 2 6.84 0.036
UK 3 2.18 0.709 UK 2 7.26 0.026
US 2 3.72 0.354 US 1 5.31 0.108
House prices (ph) GDP (q)
Canada 1 1.79 0.800 Canada 1 5.12 0.123
Germany 1 3.70 0.358 Germany 1 6.63 0.042
France 2 4.51 0.184 France 0 4.93 0.140
Italy 1 7.43 0.023 Italy 4 6.67 0.041
Japan 1 2.22 0.700 Japan 0 18.03 0.001
UK 1 4.64 0.170 UK 0 1.23 0.933
US 2 7.15 0.029 US 1 1.39 0.899

Notes: AR lags are chosen via minimising Schwarz (1978) information criterion over lags 0 to 12. Test
statistic refers to an F -test as described in the text. Nominal p-values are obtained by linear interpo-
lation from tables that have been generated for a range of sample sizes and significance levels using
Monte Carlo simulations of the null model with Gaussian innovations and five million replications per
sample size.

The outcomes of the ADF tests are depicted in Table 1. Note that the AR lags are chosen by min-

imising the Schwarz (1978) information criterion that has been argued to produce roughly correctly

sized ADF tests (Hall (1994)).

Three results stand out: First, tests on credit-to-GDP (c/q) provide the weakest evidence against the

null hypothesis of a unit root, as it cannot be rejected for any country case at any given significance level,

while for the remaining variables the null hypothesis is at least rejected in two out of the seven country

cases using the ten percent significance level. This marks a strong result, as precisely credit-to-GDP is

recommended by the Basel regulations to be used with the HP (400000) filter and, thus, a gap measure

could be at high risk of representing an artefact of the method of detrending. Second, evidence against a

unit root with drift is greatest for GDP (q, rejection in three out of seven country cases) and bond prices

(pb, rejection in six out of seven country cases) considering the five percent significance level. Clearly,

the result for bond prices could possibly be driven by the transformation of yields to prices considered

in this study. Third, for all other variables, evidence is weak against a unit root with drift. At the five
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percent significance level, rejections occur in two country cases for credit (c) and house prices (ph) and

no country case for equity prices (pe). At the ten percent significance level, the null is rejected in two

country cases for equity prices.

In sum, the ADF tests reject the null hypothesis of unit root with drift in only 12 out of 42 cases

considering the five percent significance level. I find weakest evidence against a unit root with drift for

credit-to-GDP and strongest evidence for bond prices. Thus, tests provide initial evidence that caution

should be exercised with regard to spurious cycles when constructing, for instance, a credit-to-GDP gap

measure as advised in the Basel regulations.

4.2 Amplitude and duration

To analyse the robustness of higher amplitude and length of financial variables relative to business

cycle variables, I first use time domain methods. Second, I consider a frequency domain perspective to

evaluate the importance of different contributing cycle frequencies with respect to the overall variance

of detrended indicators.

4.2.1 Time domain perspective

I resort to standard deviation to describe amplitude and first-order autocorrelation as a proxy for dura-

tion. I summarise these figures using boxplots indicating the spread of the statistics across countries

(see Figures 7 and 8).

c c/q ph pe pb q

(a) ∆ filter

c c/q ph pe pb q

(b) HP (1600) filter

c c/q ph pe pb q

(c) BK (1.5,8) filter

c c/q ph pe pb q

(d) ∆4 filter

c c/q ph pe pb q

(e) HP (400000) filter

c c/q ph pe pb q

(f) BK (8,30) filter

Figure 7: Standard deviation of detrended indicators across G7 countries
Notes: c denotes total credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.

With respect to amplitude, Figure 7 suggests that, independent of the filter, financial variables, except

for bond prices, robustly have higher amplitude than GDP. For bond prices, the ∆ filter leads to smaller

standard deviations across countries when compared to the figures for GDP. For equity prices, I find by

far the highest amplitude. This result is least pronounced using the BK (8,30) filter. Second are house

prices, although these are very close to the standard deviations of credit, credit-to-GDP, and bond prices.
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c c/q ph pe pb q

(a) ∆ filter

c c/q ph pe pb q

(b) HP (1600) filter

c c/q ph pe pb q

(c) BK (1.5,8) filter

c c/q ph pe pb q

(d) ∆4 filter

c c/q ph pe pb q

(e) HP (400000) filter

c c/q ph pe pb q

(f) BK (8,30) filter

Figure 8: First-order autocorrelation of detrended indicators across G7 countries
Notes: c denotes total credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output. Note that scales differ for
the ∆ filter.

With respect to persistence, Figure 8 indicates that financial indicators, except for equity prices,

robustly have higher autocorrelation than GDP. Across detrending methods, it is not clear which variable

has the highest persistence. Lowest persistence is found for equity prices across methods of detrending,

except for the BK (8,30) filter, in which case output is least persistent.

Across filters and considering both amplitude and persistence, two results are worth noting. First,

differences to GDP appear to be rather marginal for HP (400000) and BK (8,30) filters; in the case of

persistence, also when considering the BK (1.5,8) filter. Second and in line with the first point, the

magnitude and dispersion of statistics vary strongly. Amplitude is highest for the HP (400000) filter,

while persistence is strongest for the BK (8,30) filter. These statistics are smallest for the ∆ filter. In

the case of persistence, for example, the range of the boxplots that describes the effects of the ∆ filter

stretches from around 0 to 0.9, while, at the other extreme, results of the BK (8,30) filter range from

close to 0.95 to around 1.

In sum, higher amplitude and persistence for credit, house prices, and bond prices as well as higher

amplitude of equity prices, all relative to GDP, are robust across the different methods of detrending.

Nonetheless, differences in the statistics are shown to be only marginally different for the HP (40000)

and the BK (8,30) filters – in the case of persistence, also for the BK (1.5,8) filter. In general, the

magnitude and dispersion of statistics across countries vary strongly across filters. These findings imply

that specific cycle frequencies of the stationary component are altered using the various filters and their

specifications.

4.2.2 Frequency domain perspective

Figure 9 shows the estimated smoothed spectral densities for each detrended variable across countries.

The solid line reflects the median of all countries at given frequency ω, while the dashed lines denote the

25% and 75% quantiles. For each detrended variable, the estimated spectral density, Ŝξ(ω), is obtained
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using a Parzen window of length 4
√
T , where T denotes the sample size.21 Again, the blue area marks

1.5 to 8 years and the purple 8 to 30 years. Further, Table 2 reports the most important cycle length as

measured by the global maximum of each spectral density, i.e., for all combinations of filters, variables,

and countries.

Higher amplitude is supported by the frequency domain perspective (see Figure 9). That is, the

magnitude of spectral densities (y-axis) for all detrended financial variables is higher than that of GDP

(q), except for bond prices (bb) in the case of the ∆ filter.22

Visually, longer-duration financial cycles – except for equity prices – are only supported by the

difference filters. Here, financial variables are clearly marked by more important, i.e., with respect

to overall variance, medium-term cycles than GDP. The exception is the equity price series (pe) with

many important cycle frequencies located in the business cycle range, similar to GDP. Bond prices still

seem to be governed by a long-term trend, as most important cycles locate at the zero frequency, except

for the HP (1600) and BK (1.5,8) filters. Differences between the durations of financial and business

cycles seem to disappear when the HP and BK filters are considered. In that regard, Table 2 offers

a more detailed view: while for the difference filters longer-duration cycles in credit, credit-to-GDP,

and house prices to cycles in GDP are apparent (for example, looking at the ∆ filter and the median

values: 12.6/16.0/9.9 versus 5.9 years respectively), they are only marginally longer using the HP and

BK filters (e.g., HP (1600) filter and median values: 7.4/8.1/7.8 versus 6.2 years respectively). They are

even marginally shorter for house prices in the case of the HP (400000) filter and for credit-to-GDP in

the case of the BK (1.5,8) filter.

Looking across filters, there is strong evidence that the data generating process for most of the data

is DS, that is, there evidence of filter-induced cycles in the stationary component. First, the detrended

components of the HP and BK filters across all countries and variables have durations around frequen-

cies indicated by the PTFs under DS, i.e., close to 7.5/30 and 6.2/18 years (see Table 2). Note that, when

interpreting the similarities of durations of the HP (400000) and BK (8,30) filtered series, it is important

to keep in mind that the grid of cycle durations above eight years is very small. This becomes clear, for

instance, when comparing the size of the large blue shaded area (covering 5.5 years) with the size of

the small purple area (covering 22 years; see, for example, Figure 9). That is, even though differences

in years may appear large, the outcomes of the latter filters across countries can still be argued to be

very similar. Further and in the case of the HP (400000) filter, where deviations from the expected

cycle duration under DS are strongest, possibly stationary components do not contain cycles of exactly

30-year duration, thus, revealing other frequencies close to 30 years. These are amplified as well, albeit

to a smaller degree than cycles of 30 years. Finally, the ∆4-filtered series tend to show the distortions

present in case of a difference stationary process as well. For instance, in the case of credit-to-GDP, eq-

uity prices, and GDP, the ∆ filter suggests the presence of short-term cycles, which are not present using

the ∆4 filter (Figure 9). Moreover, long-term cycles are emphasised more than cycles in the business
21Figures actually show pseudo spectra, meaning that the zero frequency is disregarded.
22Note that to compare overall figures one would have to integrate the spectral densities for each detrended variable and

country. Thus, it is not entirely correct to compare the magnitude of important cycles across indicators. The time domain
offers an easier to interpret perspective in this case.
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Table 2: Cycle duration of detrended indicators

Variable ∆ ∆4 HP HP BK BK Variable ∆ ∆4 HP HP BK BK
Country (1600) (4·105) (1.5,8) (8,30) Country (1600) (4·105) (1.5,8) (8,30)

Credit (c) Equity prices (pe)
Canada 12.3 12.3 8.9 14.6 6.5 14.9 Canada 3.5 3.5 6.9 10.2 6.2 13.6
Germany ∞ ∞ 7.4 50.0 6.9 30.6 Germany 3.3 7.8 7.3 11.7 6.5 13.2
France 11.8 11.9 7.0 13.7 5.9 14.9 France 3.1 7.0 6.8 22.3 6.3 17.8
Italy 17.2 17.4 8.6 17.1 7.0 20.3 Italy 6.4 6.6 6.6 16.8 6.1 16.9
Japan ∞ ∞ 6.4 ∞ 5.9 ∞ Japan 7.8 7.8 6.8 17.7 5.9 16.8
UK 21.8 20.9 5.8 18.5 5.5 23.3 UK 5.8 6.3 6.3 23.8 5.9 21.8
US 12.6 12.6 7.4 14.2 6.2 17.7 US 3.4 3.5 7.0 ∞ 6.4 23.5

Average 15.1 15.0 7.4 21.3 6.3 20.3 Average 4.8 6.1 6.8 17.1 6.2 17.7
Median 12.6 12.6 7.4 15.8 6.2 19.0 Median 3.5 6.6 6.8 17.2 6.2 16.9

Credit-to-GDP (c/q) Bond prices (pb)
Canada 11.4 11.4 8.7 14.0 5.4 14.3 Canada ∞ ∞ 7.1 ∞ 6.4 ∞
Germany ∞ ∞ 3.8 24.1 4.4 23.0 Germany ∞ ∞ 8.1 14.1 6.3 16.4
France 17.5 19.1 8.6 16.5 5.3 17.5 France ∞ ∞ 7.1 ∞ 6.3 ∞
Italy ∞ ∞ 8.5 19.3 4.0 28.4 Italy ∞ ∞ 6.8 ∞ 6.2 ∞
Japan ∞ ∞ 6.0 ∞ 5.7 ∞ Japan ∞ ∞ 6.5 36.6 5.5 23.5
UK 18.0 17.1 8.1 16.8 5.6 24.1 UK ∞ ∞ 6.0 5.4 75.9
US 14.4 14.3 7.6 15.4 6.4 20.9 US ∞ ∞ 6.5 81.9 5.7 ∞

Average 15.3 15.5 7.3 17.7 5.3 21.4 Average n.a. n.a. 6.9 44.2 6.0 38.6
Median 16.0 15.7 8.1 16.7 5.4 22.0 Median n.a. n.a. 6.8 36.6 6.2 23.5

House prices (ph) GDP (q)
Canada 12.6 12.6 7.0 15.1 6.5 15.6 Canada 13.9 14.0 6.2 16.1 5.8 15.3
Germany 8.4 8.3 7.8 13.2 6.9 13.6 Germany ∞ ∞ 6.6 14.1 5.8 14.6
France 15.2 15.2 9.5 16.3 5.7 16.8 France 0.9 5.7 5.9 15.6 5.7 15.1
Italy 9.9 10.0 7.7 12.3 6.4 14.0 Italy ∞ ∞ 5.6 14.8 5.4 19.1
Japan 9.2 8.9 7.8 ∞ 6.0 40.2 Japan ∞ ∞ 6.8 ∞ 6.0 21.6
UK 9.4 10.1 6.7 14.8 5.9 16.7 UK 5.8 5.9 5.9 14.4 5.6 17.1
US 11.4 11.6 8.0 14.9 6.2 15.1 US 6.0 6.2 6.3 15.2 6.0 ∞

Average 10.8 11.0 7.8 14.4 6.2 18.8 Average 6.7 7.9 6.2 15.1 5.8 17.1
Median 9.9 10.1 7.8 14.9 6.2 15.6 Median 5.9 6.0 6.2 15.0 5.8 16.2

Duration of maximum amplified cycle under DS time series process
- - 7.5 30.0 6.2 18.0 - - 7.5 30.0 6.2 18.0

Notes: Numbers indicate cycle length in years referring to global maximum of spectral density from 0 to π of the detrended component
obtained by the indicated filter. ∞ denotes that maximum cycle duration is global maximum of spectral density. Average and median are
derived neglecting countries with cycle duration of∞.

cycle region. For instance, the three peaks in the financial and business cycle range of equity prices are

biased as though the underlying data was DS, i.e., amplifying the longer-duration cycles and relatively

dampening shorter-term ones. The same holds true for GDP and credit-to-GDP.

Second, the differences in variances of the detrended components (y-axis) across filters are broadly

in line with the distortions present with difference stationary data, implying that strongest biases of the

stationary component occur when extracting medium-term cycles (see Figure 9). Magnitudes are by

far the strongest for the HP (400000)- and BK (8,30)-filtered series, in which case the filters have an

amplification of cycles in the stationary component of a factor of around 204 for cycles close to 30 years

and 120 for cycles close to 18 years. For instance, the detrended credit-to-GDP ratio has a peak above

0.01 for both filters and the peak of the HP (400000)-detrended component is above the peak of the

BK (8,30)-filtered component. Second are the magnitudes of the ∆4 filtered series in which case the

filter has an amplification of cycles of a maximum factor of around 16 for longer-term cycles (peak of

credit-to-GDP above 0.002). The HP (1600) filter leads to values only slightly smaller than the ∆4 filter

(peak of credit-to-GDP above 0.0005), relating to the PTF in the DS case that shows a magnification
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of cycles of around 7.5 years by a factor of up to roughly 13. Interestingly, the BK (1.5,8) filter shows

magnitudes similar to the HP (1600) filter (peak of credit-to-GDP close to 0.0005), even though its PTF

in the DS case shows a magnification of up to 18 times, which is a stronger amplification than in the

case of the ∆4 filter. This can be reconciled by the fact that the ∆4 filter magnifies a greater range

of frequencies and does not sharply peak at a specific cycle duration. The smoothing of the spectral

densities in the estimation process can be argued to lead to such differences. The mentioned differences

in magnitudes across filters also hold true for bond prices, in which case, however, the ADF tests reject

the null hypothesis of unit root with drift in most cases. Bond prices, however, seem to be a special

case, as even after filtering they are governed by a long-term trend (except for the HP (1600) filter), thus

possibly neither being trend nor difference stationary.

In sum, the frequency domain perspective suggests two things: It supports higher amplitude and

longer-duration of financial cycles relative to business cycles for all methods of detrending and variables,

except for equity prices in the case of the difference filters. However, most important cycles of financial

variables reported using the HP and BK filters are, in nearly all cases, only marginally longer than cycles

in GDP. Second, there is strong evidence of spurious cycles for all HP- and BK-detrended series, since

each specification and filter leads to a similar-duration cycle that is line with the predicted duration of the

maximum amplified cycle under DS. Similar lengths of most important cycles across countries marks a

very strong result as different country histories, laws, and institutions should lead to different country

cycles, which are apparent using the difference filters. Note that, even though cycles of HP (1600)-

and BK (1.5,8)-detrended series have each similar durations, the potential bias for inference is still less

strong than considering HP (400000)- and BK (8,30)-detrended series, that is, while the former filters

still include fluctuations of other frequencies besides the maximum amplified frequency, the latter filters

– in relative terms – do not. Finally, the fourth difference filter eliminates all short run frequencies and

emphasises longer-term frequencies, which specifically matters for credit-to-GDP, equity prices, and

GDP.

4.3 Synchronisation of financial cycle variables across countries

Below I shed light on the synchronisation of financial cycle variables across G7 countries. First, I con-

sider a time domain perspective using average contemporaneous correlations for each detrended series

across countries and, second, I depict results from a frequency domain perspective. The frequency

domain analysis starts by introducing a measure I call dynamic power cohesion. This represents the

equivalent to the average contemporaneous correlation employed in the time domain, additionally al-

lowing to differentiate between the importance of common cycles, considering their relation to overall

variance of indicators and whether these common cycles contribute positively or negatively to the over-

all correlation.

4.3.1 Time domain perspective

For the analysis of synchronisation of variables across countries, I employ, as indicated, the standard

correlation measure between country pairs. These statistics are depicted in the boxplots of Figure 10,
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Figure 10: Correlation of detrended indicators across G7 countries
Notes: c denotes total credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output. BK filter uses K = 40.

showing their dispersion across countries. Each panel contains a comparison of correlations across

variables for one of the filters. The y-axis has been restricted for all panels and ranges from one to the

minimum value over all boxplots.

Equity and bond prices always belong to the variables that are most strongly synchronised across

countries. However, a clear difference to the synchronisation of GDP only exists when employing the

∆ filter – for bond prices also using the ∆4 filter. For the remaining filters and specifications, the

differences become more marginal or disappear. Differences are least marked when considering the

BK (1.5,8) filter. In this case, equity prices and GDP show a similar degree of synchronisation across

countries, caused by a strong increase in the synchronisation of GDP at these frequencies. Differences

to GDP are rather similar when considering the HP (1600) and the ∆4 filter. The HP (400000)- and

the BK (8,30)-filtered series show a strong increase in dispersion of country correlation, leading to a

vanishing of marked differences.

For credit, house prices, and credit-to-GDP results suggest a weaker (for example, looking at the

median) synchronisation than GDP across methods of detrending. However, the dispersion of statistics

is stronger than for GDP, thus leading to country cases that show a similar synchronisation to cycles in

GDP. While these results broadly hold for the difference filters and the HP (1600) and BK (1.5,8) filters,

they are distorted when considering the HP (400000) and BK (8,30) filters. Here, similar to the case of

equity and bond prices, the dispersion of statistics particularly increases, such that differences become

less clear. More severely, the filtered series show a strong negative correlation for some of the country

cycles, being strongest for credit-to-GDP, which, to this degree, is not apparent from any of the other

detrending procedures.

In sum, equity and bond prices belong to the variables that are most strongly synchronised, and

credit, credit-to-GDP, and house prices among the variables that are most weakly synchronised across

methods of detrending, in most cases being different from the synchronisation of GDP. Differences to
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the synchronisation of GDP turn marginal or disappear, e.g., for equity prices and bond prices when

using the BK (1.5,8) filter or for credit, credit-to-GDP, and house prices when considering medium-

term frequencies. The dispersion of synchronisation of cycles in credit, credit-to-GDP, and house prices

is largest, such that some country pairs are more strongly and some more weakly related. In that regard,

the application of the HP (400000) and BK (8,30) filters induces the greatest dispersion, resulting in

a strong negative correlation of cycles which, to this degree, is not apparent using any of the other

methods of detrending.

4.3.2 Frequency domain perspective

First, I introduce the methodology of dynamic power cohesion, subsequently, the method is used to shed

light on the synchronisation of financial cycle variables across G7 countries.

Methodology: Dynamic power cohesion – Are important common cycles positively or negatively
related?

The methodology developed in this section is based on work by Croux, Forni and Reichlin (2001) and

Schüler et al. (2015, 2017). Specifically, I combine, on the one hand, the idea of dynamic correlation

that indicates contemporaneous correlation over the frequency band and, on the other hand, power

cohesion that provides information about the common cycle frequencies that matter most with respect

to the overall variance of a set of indicators. Dynamic power cohesion can be argued to be the direct

correspondence of the previous exercise, just in the frequency domain. It allows to point out cycles

that account for the overall contemporaneous correlation measured in the last section. This highlights

whether the synchronisation of common cycles occurs at different frequencies using different filters,

also indicating whether cycles contribute positively or negatively to overall correlation.

As indicated, I call the proposed method dynamic power cohesion (DPCoh) and define it as

DPCohΞ(ω) =
1

(M − 1)M

∑
i6=j

cξiξj (ω)

σξiσξj
, (25)

where 1 ≤ i ≤M , 1 ≤ j ≤M , Ξ = (Ξ′1, . . . ,Ξ
′
T )′ is a T×M matrix and Ξt = (ξ1,t, . . . , ξM,t) (1×

M ). Further, t = 1, . . . , T and M ≥ 2 reflect the time dimension and number of variables respectively,

and ω ∈ [−π, π] denotes the cycle frequency.23 Ξ is assumed to contain stationary stochastic processes

with well-defined normalised cross-spectral densities, where σξi and σξj are the standard deviations and

cξiξj (ω) is the co-spectrum of the detrended components ξi,t and ξj,t. The co-spectrum is defined as

the real part of the cross-spectrum, sξiξj (ω), which can be decomposed into the co-spectrum and the

quadrature-spectrum, qξiξj (ω), as

sξiξj (ω) = cξiξj (ω) + iqξiξj (ω). (26)

The co-spectrum measures the covariance in phase and the quadrature-spectrum out of phase.
23Actually, considering the frequencies from 0 to π suffices to provide all information on cycles in phase, as only the real

part of the cross-spectral density is considered.
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To give some intuition on the proposed measure, note that integrating from −π to π yields the

correlations analysed in the previous section, i.e.,∫ π
−π cξiξj (ω)dω

σξiσξj
=

Cov[ξit, ξjt]

σξiσξj
= ρξiξj (27)

The above identity has two implications: first, the co-spectrum may take positive as well as negative

values and, second, a positive co-spectrum at some frequency and negative at some other can potentially

cancel each other out when integrating to the overall covariance. For instance, Croux et al. (2001) show

that while a white noise process and its one-period lagged value have zero correlation, the co-spectrum

indicates perfect positive correlation in the long run (at frequency 0) and perfect negative in the short

run (at frequency π), overall, however, integrating to zero. Thus, dynamic correlation makes it possible

to gain more insights on the linear relation of two stationary processes than the standard correlation

measure.

Finally, note that dynamic power cohesion differs from cohesion based on dynamic correlation (see

Croux et al. (2001)) by relating the co-spectrum to the overall standard deviations and not the respective

auto-spectra at frequency ω. Thus, while dynamic correlation cohesion – as proposed by Croux et al.

(2001) – can be used to study linear similarities of two processes at each frequency ω, the suggested

measure provides information on the relative importance of frequencies with respect to the indicators’

overall fluctuations. For a further discussion – including a comparison to squared coherency – please

refer to Schüler et al. (2015, 2017).

Results

Dynamic power cohesion is depicted for all detrended series in Figure 11.24 The solid line reflects the

mean across countries at frequency ω, whereas the dashed lines represent the 25% and 75% quantiles.

The blue area marks the business cycle region, which is 1.5 to 8 years, and the purple marks the medium-

term cycle region of 8 to 30 years. The x-axis is restricted and shows the spectra from close to 0 to π/2,

i.e., one year is the shortest cycle length depicted. Note that, due to the normalisation of cross-spectral

densities (see Equation (25)), a comparison of the strength of synchronisation among indicators without

integrating over ω is difficult. Nonetheless, graphs serve to highlight differences in important cycle

frequencies that explain the synchronisation of detrended indicators across countries.

The correlation of indicators occurs at cycle frequencies that contribute strongly to the overall vari-

ance of the single detrended indicators (see Section 4.2.2). Thus, DPCoh suggests that synchronisation

of detrended series is based on filter-induced cycles in the case of the HP and BK filter, calling for

caution when analysing cross-country correlation. Emphasised cycles do not necessarily represent im-

portant fluctuations of the stationary component, i.e., with respect to its overall variance. Again, special

caution needs to be taken when extracting medium-term frequencies, as other cyclical components are

relatively more strongly muted than when considering the HP (1600) or BK (1.5,8) filters. For instance,

the HP (1600) and BK (1.5,8) detrended house prices still contain fluctuations in the business cycle
24The cross-spectral densities used in the derivation of DPCoh are similarly obtained as the spectral densities, i.e., using a

Parzen window with length 4
√
T . Again, I show pseudo spectra, i.e., for which I exclude the zero frequency.
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Figure 11: Dynamic power cohesion of detrended indicators across G7 countries: ∆, HP (1600), BK
(1.5,8) filter in black, ∆4, HP (400000), and BK (8,30) filter in red

Notes: The blue area marks business cycle frequencies (1.5-8 years) and the purple area medium-term cycles (8-30 years). Solid line is mean
across countries at frequency ω; dashed lines depict the 25% and 75% quantiles. c denotes total credit, c/q credit-to-GDP, ph house prices,
pe equity prices, pb bond prices, and q output.
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range, which are relatively muted considering the HP (400000) filter. Clearly, the BK (8,30) was spec-

ified to exclude frequencies below eight years, nonetheless, due to the amplification of medium-term

cycles, the HP (400000) detrended series contains similarly few important cycles in the business cycle

range.

Further, DPCoh suggests that the lower overall synchronisation of detrended credit and credit-to-

GDP is due to opposing medium-term cycles for certain country pairs, that is, the negative co-movement

at medium-term frequencies cancels out positive co-movement at shorter frequencies, such that overall

correlation is found to be lower than for GDP, e.g., for the ∆ filter. In general, for all filters, except the

HP (1600) filter, the range between the 75% and 25% quantile also reaches into the negative support

of the y-axis for medium-term cycles. In the case of the HP (1600) filter, these opposing medium-term

cycles are disregarded. In this light, previous results of strong negative correlation of HP (400000)- and

BK (8,30)-detrended series, e.g., of credit-to-GDP, can be explained by the amplification of medium-

term cycles that are negatively related for some country pairs and the relative dampening of shorter-term

fluctuations that are positively related.

Summarising, there is strong evidence that the synchronisation of HP- and BK-detrended series

occurs mostly at cycles induced by the filters, calling for caution in drawing inference from the latter.

Special attention needs to be taken when considering the medium term, as the amplification of such

cycles - in relative terms - strongly mutes shorter-term cycles, for instance, leading to strong negative

correlation of the HP (400000)- and BK (8,30)- detrended credit-to-GDP ratio. Finally, weaker overall

synchronisation of credit and credit-to-GDP is found to be due to opposing medium-term cycles.

5 CONCLUSIONS

Beyond enhancing financial system resilience, one of the key objectives of macroprudential policy is

to attenuate financial cycles. Clearly, central to this objective are the properties of financial variables.

These are of vital importance not only in terms of consistently informing policy makers and regulators,

but also in influencing the design of theoretical models. While I find that financial cycle properties

differ markedly across methods of detrending, their differences from similarly detrended GDP are qual-

itatively akin.

Nonetheless, caution needs to be exercised regarding the method of detrending, since I find sig-

nificant evidence of spurious cycles that bias inference, for instance, regarding the synchronisation of

detrended variables across countries. Specifically, a frequency domain perspective suggests that the

Hodrick and Prescott (1981, 1997) (HP) and Baxter and King (1999) (BK) filters, and, in general, any

band-pass filter amplify certain frequencies that lead to a relative dampening of other cycles, which

could be relevant for the research question or the specific policy task (see Section 2 for examples). The

negative consequences of spurious cycles increase for the HP filter in the magnitude of the smooth-

ing parameter and for the BK filter in the filtering of longer-term cycles, raising concerns about a HP

smoothing parameter of 400,000, as recommended in the Basel regulations or the smoothing window 8

to 30 years suggested by Drehmann et al. (2012).
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Further, I find evidence that the weak synchronisation of credit and credit-to-GDP across countries

(see Schüler et al. (2017)) is partially due to opposing medium-term cycles, which could potentially

relate to differing degrees of financial market liberalisation (see Favilukis et al. (2013)).

Three main policy conclusions may be drawn from this study. First, caution needs to be exercised

when analysing extracted medium-term cycles, as for instance suggested in Basel III. The strong am-

plification of a small range of cycles cancels shorter-term frequencies that could be potentially relevant,

say, in signalling the build-up of imbalances prior to systemic banking crises or the abrupt risk materi-

alisation thereafter. Also, if the frequency of financial crises increases, build-up phases of imbalances

will not be visible when focussing exclusively on a very specific medium-term frequency range. Hence,

there is a high risk that the recommended credit-to-GDP gap will misguide the setting of the CCyB

rate. Second, assuming the same HP smoothing parameter or BK frequency window across different

countries, means that relevant country-specific fluctuations are likely to be missed. While the US Basel

credit-to-GDP gap indicates imbalances before the savings and loan crisis and the global financial cri-

sis, the emphasis of such medium-term frequencies does not necessarily imply that Basel credit-to-GDP

gaps signal systemic banking crises for other countries as well – rather the opposite: the strong ampli-

fication of medium-term cycles is prone to miss fluctuations of relevance for other countries. The same

argument also holds for studies researching on business cycles that assume similar detrending specifi-

cations across countries; however, the risk of missing relevant fluctuations is greater when considering

medium-term cycles. Third, differing empirical properties of financial and business cycle variables

make a strong case for macroprudential policy possibly taking a complementary role to other macroe-

conomic policies that primarily target business cycles.

Two avenues for addressing the risks of spurious cycles seem reasonable: First, one could com-

pletely avoid the application of HP and BK filters on trending levels by considering their growth rates.

Of course, stationary growth rates could still be filtered to focus on specific frequencies. In this re-

gard, Schüler et al. (2015, 2017) suggest forming cross-sectional averages (with time-varying weights)

of standardised growth rates of credit and asset prices which allow to focus on expansions and con-

tractions common to this set of variables, thus dampening idiosyncratic movements. Such measure

already provides a relatively smooth estimate of cyclical fluctuations without the need to rely on further

filtering techniques. The authors show in a real-time early warning exercise that a filtered composite

financial cycle – by far – outperforms the credit-to-GDP gap for G7 countries, possibly reflecting the

fact that the large HP smoothing parameter emphasises frequencies that are not relevant in some country

cases. Second, one could still rely on HP and BK filters for detrending, albeit using country-specific HP

smoothing parameters or frequency windows (possibly changing over time) that amplify frequencies

relevant for the specific task. In this context, Schüler et al. (2015, 2017) propose a methodology for

forming country-specific cycle frequencies that are based on the cohesion, i.e., correlation, between the

growth rates of financial cycle indicators in the frequency domain. Alternatively, one could use unob-

served components models that lead to country-specific cycles (see, for example, Rünstler and Vlekke

(2016); Galati et al. (2016)). However, for this class of models, too, studies find evidence of spurious

cycles if the true DGP is DS (Nelson (1988)).
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There are ample paths for future research. Studies could highlight the potential distortions to fi-

nancial cycle variables implied by other methods of detrending, such as different setups of unobserved

components models. Further, one could shed light on the implications of different trends for the classi-

cal turning points approach that has also been considered to characterise financial variables. Also, given

the long debate on the nature of the trend in GDP, there is a clear need for further – not only empirical

– research on the nature of trends present in financial variables. Further, Hamilton (2017) recently sug-

gests an alternative to HP filters based on simple regression techniques. It would be of great interest to

understand how such a method could be used in the context of medium-term filtering. Finally and with

respect to the synchronisation of credit and credit-to-GDP cycles, more research is needed to shed light

on the potential driving factors behind the opposing medium-term cycles.
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A APPENDIX

A.1 Simulated data

In order to illustrate the negative consequences of spurious medium-term cycles, I simulate data from

a difference stationary time series process. To recover realistic dynamics, I fit an autoregressive (AR)

model to changes in the US credit-to-GDP ratio. The lag structure of the AR model is determined to be

five by considering the Schwarz (1978) information criterion and residual autocorrelation. Specifically,

I generate data for t = 1, . . . , 180, which is similar to the number of observations available for the

financial indicators used in this study. The AR model with five lags is

ψt = 4.48 · 10−4 + 0.56ψt−1 + 0.20ψt−2 + 0.21ψt−3 − 0.32ψt−4 + 0.21ψt−5 + νt,

where νt ∼ N(0, 2.89 ·10−5). I derive the level, yt, by cumulatively summing up the simulated time

series. yt as well as the one- and two-sided HP (400000) filtered gaps are shown in Figure 12.

50 100 150
0

0.5

1

(a) Level

50 100 150
-0.1

0

0.1

(b) HP filtered gaps: Two-sided (red) versus
one-sided (purple) filter

Figure 12: Simulated data
Notes: The HP-filtered gaps are obtained by detrending the level of the simulated data with a smoothing parameter 400,000.
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A.2 Data

A.2.1 Indicators and detrended levels
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Figure 13: Canada’s financial and business cycle indicators and their detrended components: ∆, HP
(1600), and BK (1.5,8) filter in black; ∆4, HP (400000), and BK (8,30) filter in red

Notes: All series, except the level, are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the left
hand panel. c denotes total credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.
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Figure 14: Germany’s financial and business cycle indicators and their detrended components: ∆, HP
(1600), and BK (1.5,8) filter in black; ∆4, HP (400000), and BK (8,30) filter in red

Notes: All series, except the level, are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the
left-hand panel. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven and Valencia (2012). c denotes total
credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.
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Figure 15: France’s financial and business cycle indicators and their detrended components: ∆, HP
(1600), and BK (1.5,8) filter in black; ∆4, HP (400000), and BK (8,30) filter in red

Notes: All series, except the level, are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the
left-hand panel. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven and Valencia (2012). c denotes total
credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.
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Figure 16: Italy’s financial and business cycle indicators and their detrended components: ∆, HP
(1600), and BK (1.5,8) filter in black; ∆4, HP (400000), and BK (8,30) filter in red

Notes: All series, except the level, are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the left
hand panel. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven and Valencia (2012). c denotes total credit,
c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.
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Figure 17: Japan’s financial and business cycle indicators and their detrended components: ∆, HP
(1600), and BK (1.5,8) filter in black; ∆4, HP (400000), and BK (8,30) filter in red

Notes: All series, except the level, are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the
left-hand panel. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven and Valencia (2012). c denotes total
credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.
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Figure 18: UK’s financial and business cycle indicators and their detrended components: ∆, HP
(1600), and BK (1.5,8) filter in black; ∆4, HP (400000), and BK (8,30) filter in red

Notes: All series, except the level, are standardised to unit variance for ease of exposition. Each row refers to the variable indicated in the
left-hand panel. Black vertical lines indicate the onset of systemic banking crises as defined by Laeven and Valencia (2012). c denotes total
credit, c/q credit-to-GDP, ph house prices, pe equity prices, pb bond prices, and q output.
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A.2.2 Credit-to-GDP gap: Two-sided versus one-sided HP filter
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Figure 19: Credit-to-GDP gap: Two-sided (red) versus one-sided (purple) HP filter
Notes: Black vertical lines indicate the onset of systemic banking crises as defined by Laeven and Valencia (2012). All series are standardised
to unit variance for ease of exposition.
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